

ROBERT WINSTON &

FANTASTIC PROJECTS FOR YOUNG SCIENTISTS

SCIENCE VALO

Senior designers Michelle Staples, Jacqui Swan
Lead editor Amanda Wyatt
Editors Steven Carton, Ben Morgan
Designers Sean T. Ross, Chrissy Barnard, Alex Lloyd,
Gregory McCarthy, Mary Sandberg
Illustrators Gus Scott, Alex Lloyd, Sean T. Ross

Managing editor Lisa Gillespie

Managing art editor Owen Peyton Jones

Producer, pre-production Gill Reid

Senior producer Meskerem Berhane

Jacket designers Tanya Mehrotra, Surabhi Wadhwa-Gandhi

Design development manager Sophia MTT

Jackets editor Emma Dawson

Managing jackets editor Saloni Singh

Jackets editorial coordinator Priyanka Sharma

Jacket DTP designer Rakesh Kumar

Picture researcher Rituraj Singh

Publisher Andrew Macintyre
Associate publishing director Liz Wheeler
Art director Karen Self
Publishing director Jonathan Metcalf

Writer and consultant Jack Challoner
Photographer Dave King

First published in Great Britain in 2019 by Dorling Kindersley Limited 80 Strand, London, WC2R ORL

Copyright © 2019 Dorling Kindersley Limited A Penguin Random House Company 2 4 6 8 10 9 7 5 3 1 001-310501-February/2019

All rights reserved.

No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without

the prior written permission of the copyright owner.

A CIP catalogue record for this book is available from the British Library. ISBN: 978-0-2413-4349-4

Printed in China

A WORLD OF IDEAS: SEE ALL THERE IS TO KNOW

www.dk.com

ROBERT WINSTON GCIENICE EAST-CACTUATIES EOD

FANTASTIC ACTIVITIES FOR YOUNG SCIENTISTS

CONTENTS

- 6 Foreword
- 8 FORCES
 AND MOTION
- 10 Wind-up car
- 18 Bottle raft
- 24 Sand pendulum
- 30 Wind turbine
- 38 Levitating ball
- 42 Tower crane
- 50 Automaton

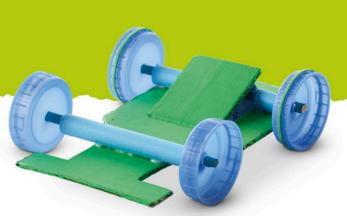
- 60 LIQUIDS
 AND REACTIONS
- 62 Blubber glove
- 66 Thermos
- 70 Pythagoras cup
- 74 Air freshener
- 78 Bubble tower
- 82 Copper reactions

SCIENCE FACTS
This symbol points out facts about biology, chemistry, or physics.

TECHNOLOGY FACTS
This symbol highlights
more information about
tools or materials.

ENGINEERING FACTS
This symbol directs you
to more facts about
structures or machines.

MATHEMATICS FACTS This symbol identifies extra information on formulas, shapes, or measurements.



98 Suspension bridge
106 Geodesic dome
112 Pantograph
118 Sturdy sandcastle

126 Wave machine
132 Spectroscope
138 Singing spoons
142 Harmonica
146 Buzzer
150 Guitar
158 Glossary
160 Index

From the age of eight, I had huge fun building models. The sense of achievement I had when they occasionally worked is amongst my most treasured memories. They ranged from cranes to aeroplanes, models of famous buildings, or, on one occasion, a mechanical contraption for passing written messages across the ceiling of my classroom. Amazingly, it was a long time before my teacher tumbled to what we were doing in class. I once made a radio amplifier from cheap components. I turned on the power, there was a humming noise, and blue smoke filled the dining room!

Nearly all my models initially ended in failure. Failure is very important because if we use it properly, we learn from our mistakes and rebuild with great improvement. All scientists encounter failure regularly; only by embracing it do we eventually get our experiments to work.

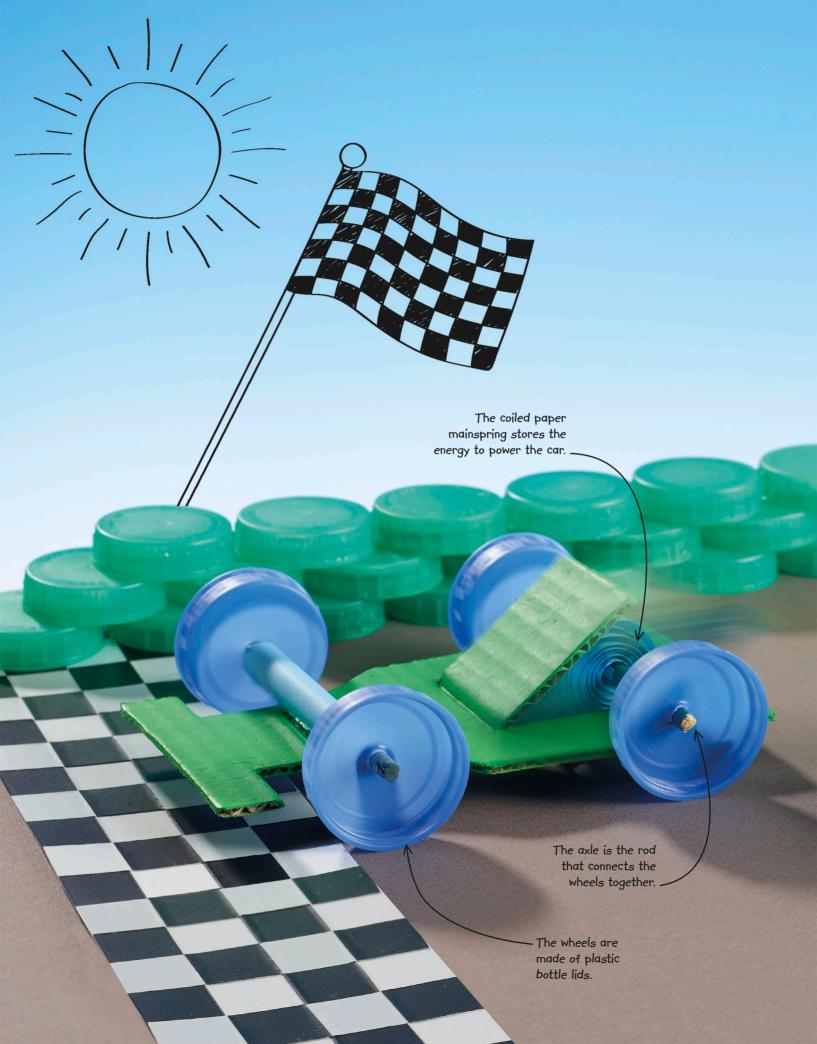
Modelling is really important, especially for scientists, engineers, and architects. Nobody would dream of designing a structure like a bridge or a stadium without making models first. This helps them understand the science behind the structures, the mathematical principles involved, and how recalculation may be needed to achieve their final ambition. Even the simplest experiments in this book show how modelling can help resolve practical problems. How does the Air freshener (page 74) behave at lower temperatures, or high humidity, for example? Test yours and find out.

The models and projects in this book allow you to consider improvements yourself. For example, the sturdy Bottle raft (page 18) offers possibilities. It might even be powered by an elastic band and wooden paddles, by a sail and wind power, or by a tiny electric fan. When my daughter was eight years old, she and I built a fan-powered boat as a school project. We even raced it across the swimming pool! It was a huge success, and several versions were then made by her classmates.

You'll also want to think about materials. Materials scientists calculate what are the most practical substances to increase strength, for example, or reduce weight. What are the best materials for the blades of the Wind turbine (page 30) or the

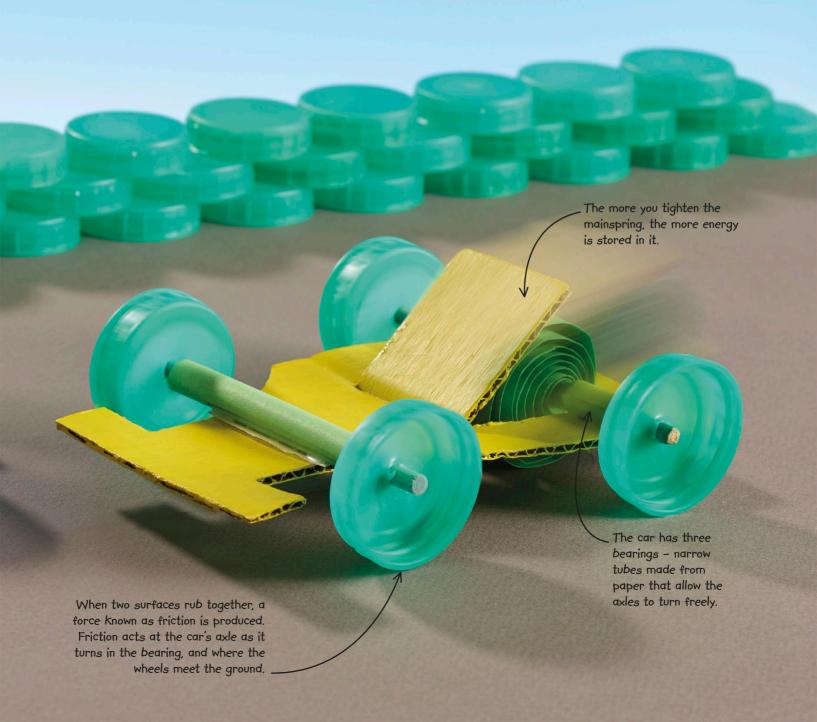
mainspring of the Wind-up car (page 10)? As you build the projects in this book, you may find alternative materials that help you to construct more effective models. And the more care you take in measuring the components precisely and drawing straight lines and accurate angles, the more pleasure you will get from seeing an effective working machine that you built yourself.

I hope you enjoy exploring science, technology, engineering, and maths in action as much as I have enjoyed doing so with my own models.


ROBERT WINSTON

FORCES AND MOTION

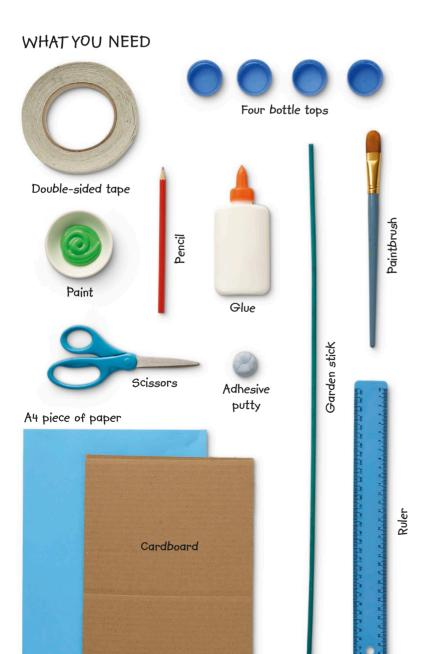
A force is a push or a pull, and there are forces at work everywhere! Forces can make things move or stop moving, make things speed up or slow down, or just keep things still. One of the most familiar forces is gravity, which pulls everything down towards the ground. In this chapter, you'll be fighting against gravity by constructing a crane and by making a ping-pong ball hover in the air. You'll also explore the forces that make a raft stay afloat.

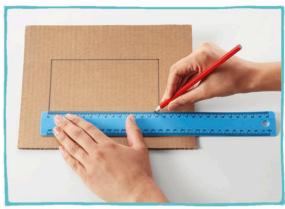


POTENTIAL ENERGY

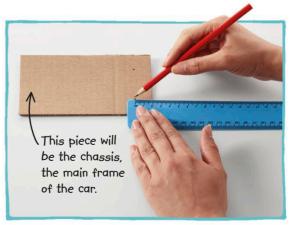
WIND CAR

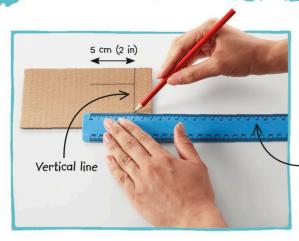

Used for centuries to make clocks and moving toys, wind-up mechanisms have long, coiled strips of springy material called mainsprings that store energy as they're tightened. Energy can't be created or destroyed, it can only be transferred. So as you wind up the car, its mainspring stores the energy you put into turning it. Let it go and VROOM! The energy is released and your car is off!

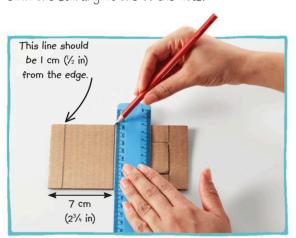


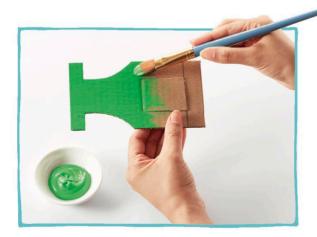


HOW TO MAKE A WIND JP CAR

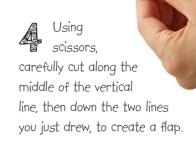

This wind-up car is powered by energy stored in a coiled mainspring made of paper. Its axles (the rods connecting the wheels) are made from a garden stick, while its bearings (the tubes that allow the axles to turn freely) are made with paper. The axles and bearings are attached to the car's frame, or chassis.

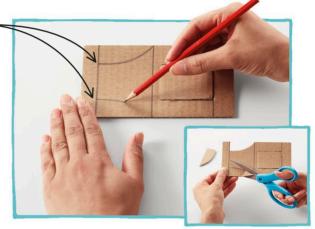



Draw a rectangle 15 cm (6 in) long and 8 cm (3 in) wide on the cardboard. Use a ruler to make sure your lines are straight. With the scissors, carefully cut out the rectangle you drew.

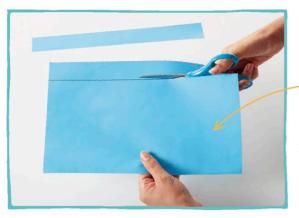

At one end of your chassis, draw two dots, each 2 cm (3/4 in) in from the end and from the side. Draw a line that passes through the dots.

Draw two lines, 5 cm (2 in) long at right angles from the vertical line you just drew, each one starting at one of the dots.


Draw two more lines, parallel to the first one, about I cm ($\frac{1}{2}$ in) and 7 cm ($\frac{2^3}{4}$ in) from the other end of your chassis.

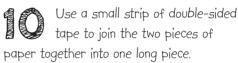

Paint the chassis. We've used green paint, but you can choose whatever colour you like.

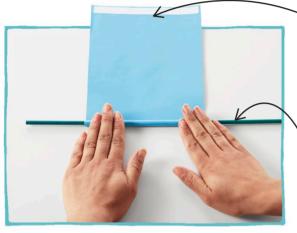
Make sure when you draw the two lines that they are are parallel to each other.


The dots should be 2 cm (3/4 in) in from each end of this line.

Make dots 2 cm (¾ in) in from each end of the line nearest the end, and draw a smooth curve from the dots to the ends of the other line. Cut along the curves.

On a piece of paper, draw two lines, 3 cm (11/4 in) and 6 cm (21/2 in) in from one of the long sides of the paper.




Paper is a thin, versatile material made from mushed up wood fibres.

Cut along the two lines to make two long strips.

These will be used to make the mainspring.

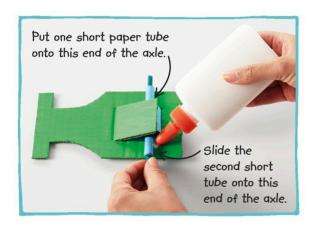
The double-sided tape will allow you to seal the paper's top edge onto the tube.

Don't roll the paper too tightly, as your car's axle will need to turn inside it.

Draw lines on the tube at distances of 2, 4, and 12 cm $(\frac{3}{4}, \frac{1}{2})$ and 5 in from one end. These pieces will be your bearings.

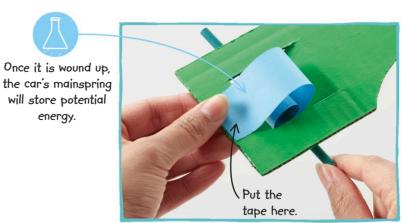
Take the rest of the sheet of paper and roll it lengthways around the garden stick to make a tube. Secure the tube with double-sided tape.

Paper becomes very strong when it is rolled up.

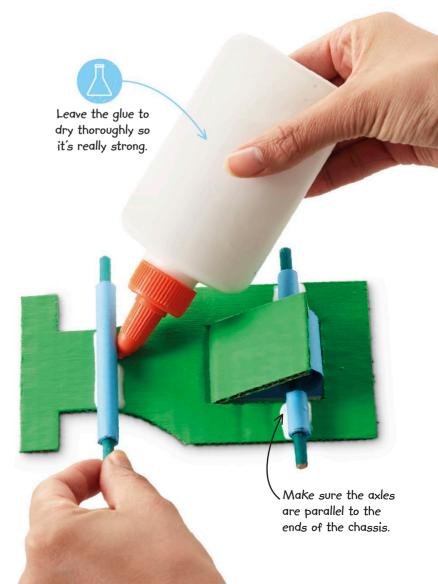


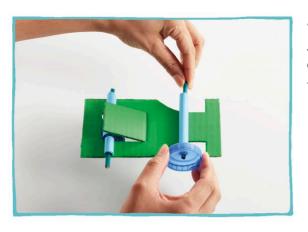
Carefully cut two II cm (4½ in) lengths of garden stick. If you have trouble cutting it safely or neatly, ask an adult to help. These will be your axles.

Cut the tube along the lines you drew. You should end up with two pieces I cm (½ in) long and one piece 4 cm (½ in) long. You don't need the rest of the paper tube, so try to recycle it.


Tape one end of your long strip or puper to the middle of one of your garden stick Tape one end of your long strip of paper axles. Coil the paper around the axle.

Turn the chassis over again, and slip one short paper tube over each end of the axle. Then glue them in place.


Use the pencil to make a small hole in the centre of each of the four bottle tops. Use adhesive putty to protect the table and your fingers.



energy.

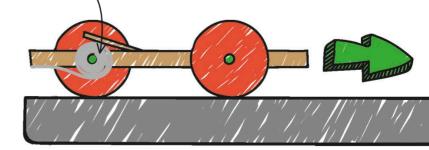
Turn the chassis upside down and push the Turn the chassis upside down and poor coiled mainspring through the flap of cardboard. Use double-sided tape to secure it.

Slip the longer paper tube over the other garden stick axle and glue that in place near the other end of the chassis.

Push the bottle tops over the ends of the axle, to give your car wheels. If they are loose, secure them with adhesive putty or glue.

Energy can't be created or destroyed. It can only be transferred.

You can work out your car's average speed by dividing the distance it travels by how long it takes.



The mainspring's energy is converted into kinetic energy, then lost as heat at the axles and ground, due to friction and air resistance.

HOW IT WORKS

Your car demonstrates potential and kinetic energy. Potential energy is stored energy, ready to make things happen. Kinetic energy is the energy objects have when they move. When you wind up the mainspring, you are storing potential energy, which will be used to make the car travel forwards. The faster an object moves and the more mass it has, the more kinetic energy it has. You can calculate the amount of energy a moving object has: multiply its mass (the amount of matter, or stuff it is made of) by its speed squared, then divide by two.

The mainspring is coiled up tightly. _ As you pull the car backwards, the turning wheels coil the mainspring tightly, storing energy. When you let go, the spring uncoils and the potential energy becomes kinetic energy. The car moves forwards.

TEST AND TWEAK

Your wind-up car should zoom across the floor or table as the mainspring unwinds. Test it out on different surfaces and adapt its design to see if you can make your car go further and faster

SANDPAPER WHEELS

Try wrapping sandpaper around the rear wheels to increase the amount of friction between them and the ground.

RUBBER BANDS

Putting rubber bands around the wheels gives the wheels extra traction, or grip, like the rubber tyres of a real car.

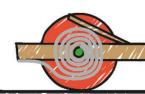
CARD MAINSPRING

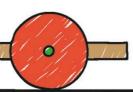
A mainspring made of card should make your car go faster, as card stores more energy than paper. But it will release this energy faster, so your car won't travel as far.

REAL WORLD: TECHNOLOGY ELECTRIC CARS

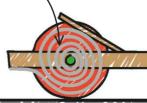
Most cars use the chemical potential energy stored in petrol to move, but not all. Electric cars have powerful batteries that store electrical potential energy. They can be recharged, like a smart phone.

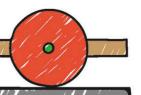
REAL WORLD: MATHS AIR RESISTANCE

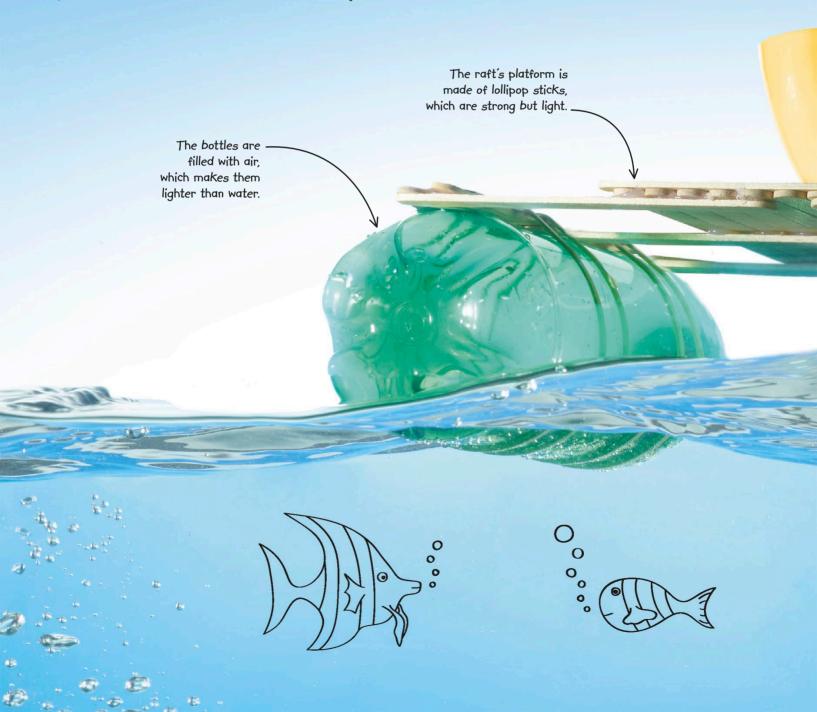



Moving cars encounter a force called air resistance, which slows them down. Air resistance increases with speed. If you double the speed of the moving vehicle, the air resistance quadruples.

The spring continues uncoiling and the car keeps moving. Its kinetic energy is lost as heat. This happens through friction (at the axles and the ground) and air resistance.

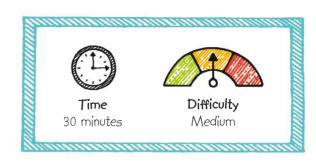

The mainspring has completely uncoiled, and can provide no more energy for the car. You can't feel the heat generated by friction and air resistance, as there isn't much kinetic energy in the first place.


Once the kinetic energy is lost, the car stops.



FLOATING FORCES

BOTTLE RAFT

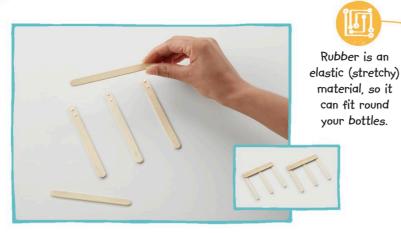

This activity could save your life! If you were stranded on a desert island, and you had some large empty barrels, you could make a raft to escape! It's a simple matter of balancing forces. The bowl of pebbles on the lollipop stick platform pushes the raft downwards into the water, but this force is balanced out by the buoyancy, or "upthrust", of the water pressing against the air-filled plastic bottles. Because these forces are equal, the raft floats!

HOW TO BUILD A BOTTLE RAFT

Empty plastic bottles float well in water, but to make an effective raft, you need to build a platform on which to support the load. It's a fairly simple project - the raft's platform is made of lollipop sticks glued together, and it is attached to the bottles with stretched rubber bands.

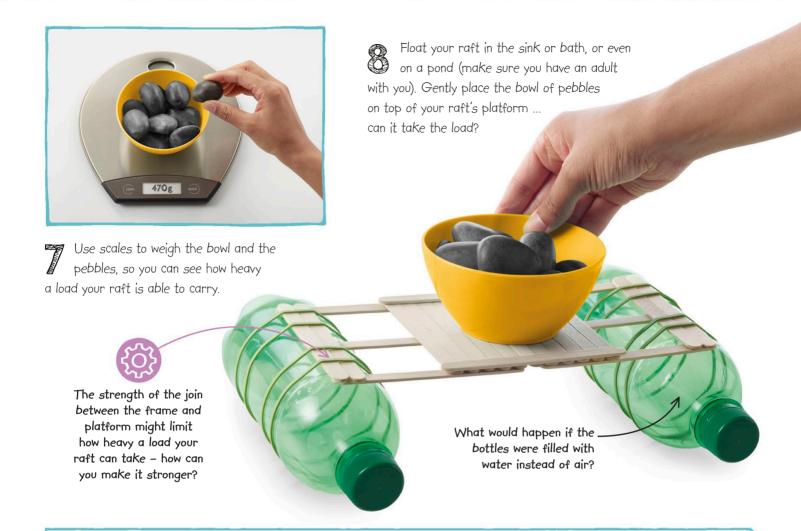
WHAT YOU NEED

Scales


Two 500 ml (I pint) bottles

Lay II lollipop sticks slue-by sinc. 22 them together by adding glue to two other Lay II lollipop sticks side-by-side. Secure lollipop sticks and positioning them on either side of the platform.

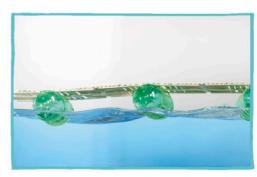
Take three Iollipop sticks. Space them evenly so that they stretch the length of one lollipop stick. Put glue at the far end of each stick.



Press two lollipop sticks on top of the dabs of glue to make an E-shape. Repeat steps 2 and 3 to make a second E-shape.

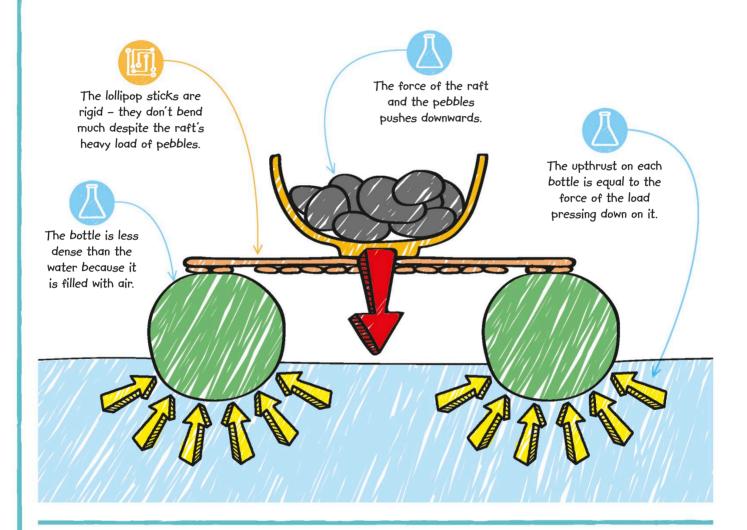
Once the glue on your two E-shapes has dried, slip two rubber bands over the ends of each one.

TEST AND TWEAK


See how much weight your raft can support by experimenting with heavier loads. You could also adapt your raft to make a bridge or even a boat. To make a boat, add a sail to give it propulsion and a rudder underneath to help it steer a straight path.

This large bowl of sand is heavier than the bowl of pebbles. What happens if you put it on your raft?

To support heavier loads, you could use bigger bottles or more bottles to make the raft more buoyant.

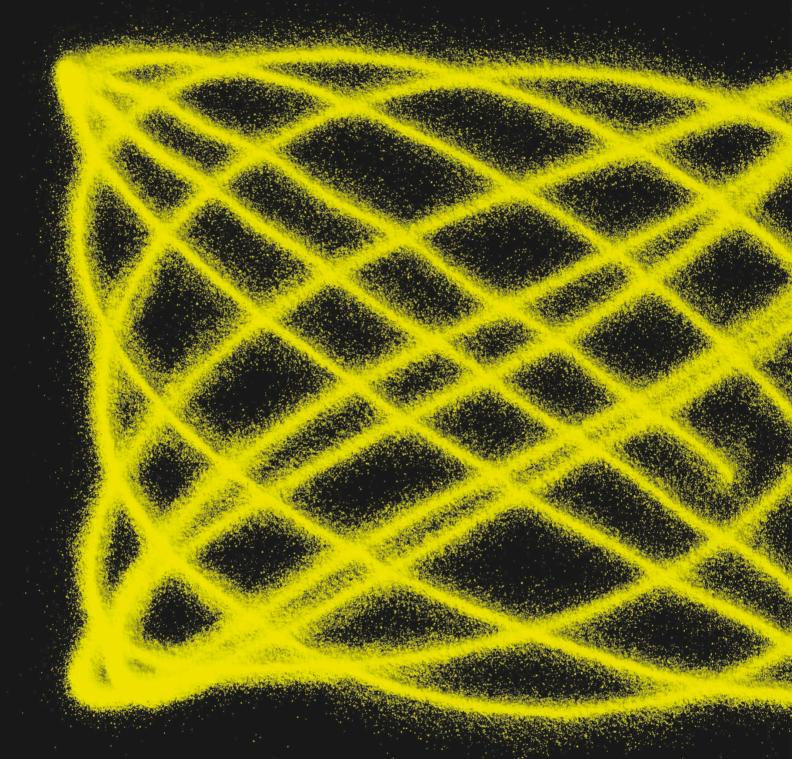


A pontoon is a bridge made by tying boats together. To turn your raft into a pontoon, simply add more platforms and bottles!

HOW IT WORKS

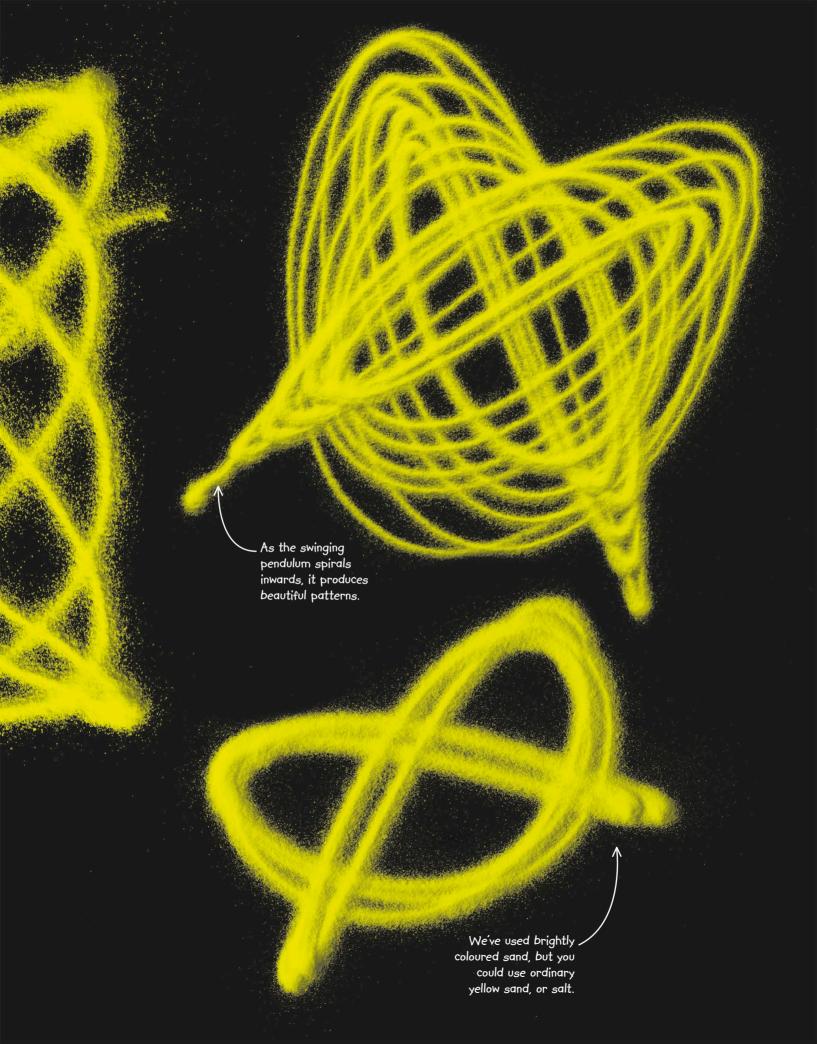
Whether or not an object floats depends on something called density. Density is how much mass (stuff) an object contains relative to its volume (the amount of space it takes up). When you place an object in water, the water pushes it upwards with a force called upthrust. If an object is more dense than water, the upthrust is too weak to support its

weight, and the object sinks. That's why small, heavy things like coins and stones sink. Objects with low density, like your air-filled plastic bottles, are less dense than water, so the upthrust supports their weight and makes them float. Any object more dense than water will sink, and any object less dense will float.



REAL WORLD: ENGINEERING

SUBMARINES


Submarines can change their buoyancy — that's how they rise to the surface and dive deep. They have tanks that can be filled with water or air. At the surface, they take water into those tanks, increasing their density — so they sink. To rise up, air is pumped into the tanks, reducing their density and allowing them to float up to the surface.

FORCE OF GRAVITY

SAND PENDULUM

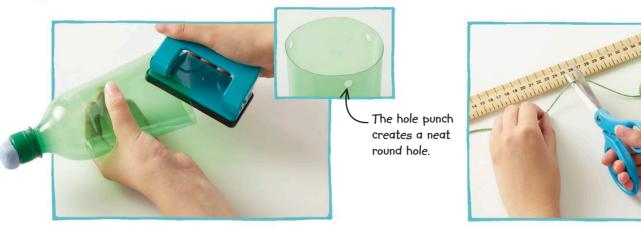
You can draw beautiful patterns with lines of sand by making a simple swinging device called a pendulum. All you need is some sand, a plastic bottle, and a long piece of string. This activity is great fun to watch but there's plenty of science to think about, too, like how the force of gravity makes the pendulum swing back and forth.


HOW TO MAKE A SAND PENDULUM

For this activity, you'll need plenty of space. We've used green-coloured sand, but ordinary yellow sand is fine, too. Make sure your sand is perfectly dry, otherwise it won't flow freely. If you don't have sand, you can use salt instead.

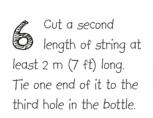
Time 30 minutes Difficulty Medium

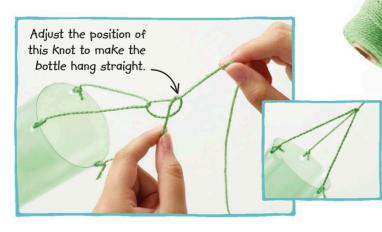
WHAT YOU NEED



Place the cap of the bottle upside down on a lump of adhesive putty. Use the scissors to make a hole about 3 mm (1/8 in) wide in the middle.

Using the scissors, cut off the bottom of the bottle. Try to keep a straight line.


Use the hole punch to make three evenly spaced holes in the plastic bottle, about I cm (1/2 in) away from the edge that you cut.



Measure and cut a piece of string about 25 cm (10 in) long.

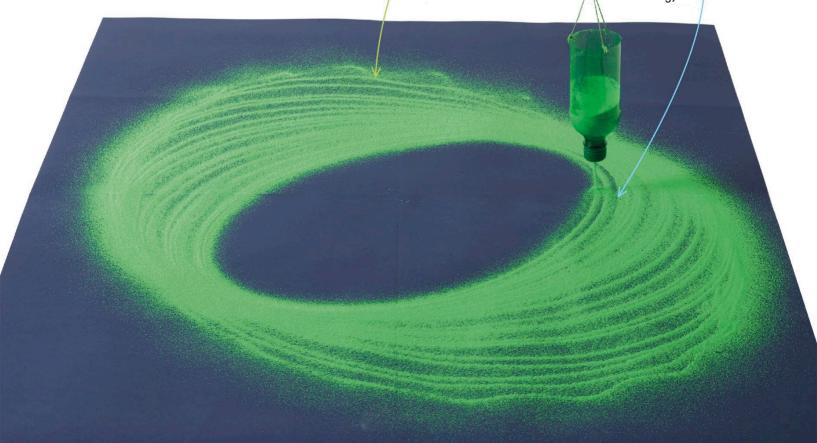
Tie the string to two of the holes in the bottle to make a loop.

Tie the long piece of string to the loop, taking care to keep the three lengths of string from each hole equal in length. This will help your bottle hang straight.

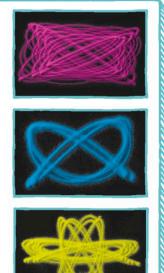
Ask an adult to help you suspend the pendulum from a high point (such as the branch of a tree or a hook on a ceiling) so the bottle cap is 4-5 cm (2 in) above the ground. Pour sand or salt into the bottle.

Use the sticky tape to join a few sheets of the dark paper. This will make one large piece to catch the sand that falls from the bottle.

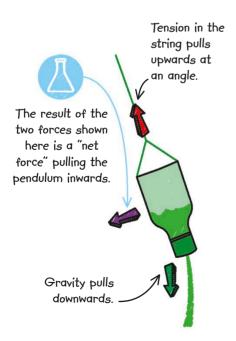
The pendulum slowly loses energy due to friction between the string and the point where it is tied, and air resistance between the bottle and the air.


Remove the adhesive putty and give the bottle a gentle sideways push to make it swing in a circle. Once the bottle is empty, fold up the paper and tip the sand back into the bottle. You can then try the experiment again.

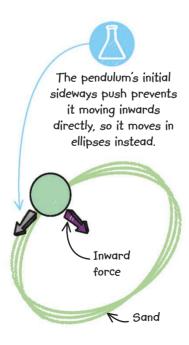
The bottle moves in oval shapes called ellipses.


The ellipses get smaller as the pendulum loses energy.

TEST AND TWEAK

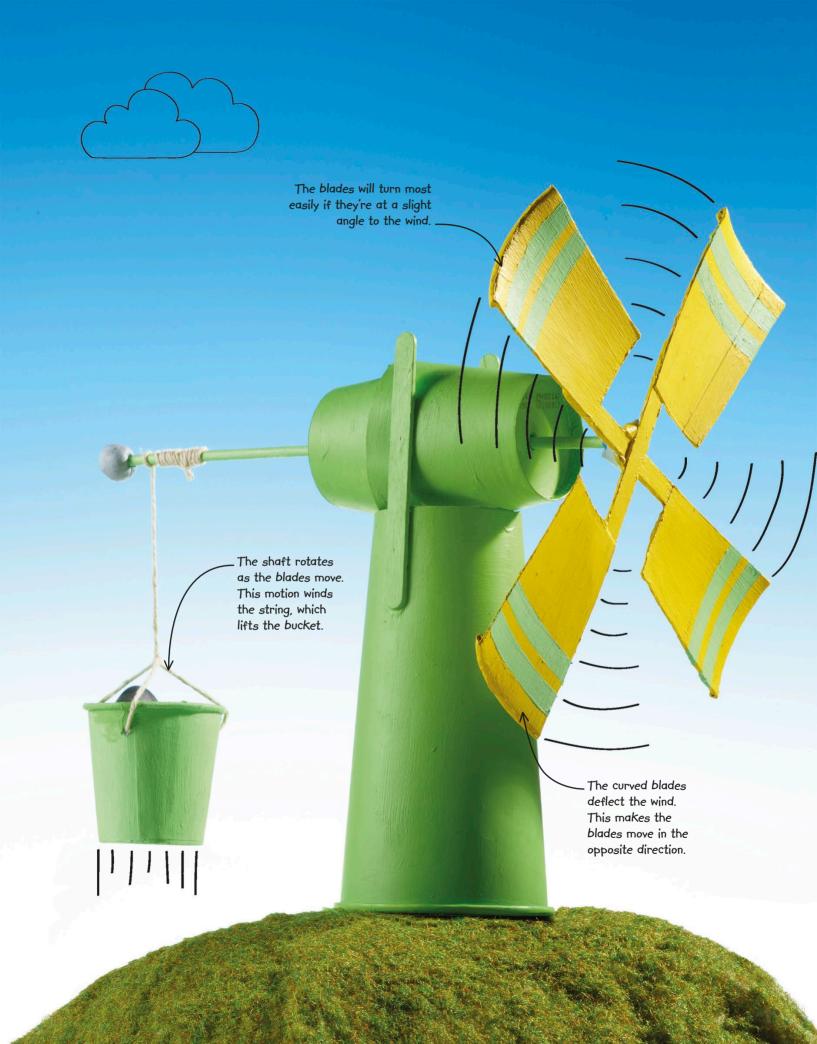

In the 1580s, the Italian scientist Galileo discovered that a pendulum swings back and forth in a straight line for a precise time, or period, that depends on its length – a discovery that eventually led to the invention of pendulum clocks. Try changing the length of your pendulum to see how it affects the time it takes to swing back and forth in a straight line. You can also make the pendulum's elliptical movements more complex by making the string Y-shaped. This gives the pendulum a short period in one direction and a long period in another, resulting in weird and wonderful sand patterns known as Lissajous curves. If you raise or lower the meeting point between the Y's arms, the Lissajous curves will change.

Changing the position of this knot results in different sand patterns.



HOW IT WORKS

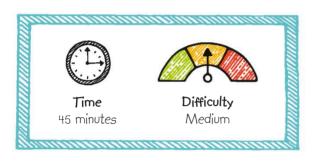
If you simply pulled your pendulum away from its resting point and let go, it would swing back and forth in a straight line until it ran out of energy. Because you pushed it sideways, it swung along a curving path – an ellipse – continually changing direction. A moving object only changes direction when a force acts on it. In this case, the force of gravity is pulling the bottle back to the middle, but its sideways motion and the pull of the string stop it returning directly. The pendulum loses energy due to friction. As a result, it slowly spirals inwards, the sand tracing out a beautiful record of its path.


FROM THE SIDE

REAL WORLD: SCIENCE ORBITING OBJECTS

The artificial satellites orbiting our planet travel in ellipses or circles, just like your sand pendulum. There is just one force acting on all these orbiting objects: gravity. It pulls the satellites inwards, causing them to curve continually around Earth rather than flying off into space.

TRANSFERRING ENERGY


WINDTURBINE

Have you ever seen huge wind turbines spinning slowly around? The blades are being pushed round by the energy of the wind. Inside each tower is an electrical generator, which converts wind energy into electrical energy to power homes, offices, factories, and schools. You can explore the engineering challenge of extracting energy from the wind by building your own wind turbine, using paper cups to make the blades.

HOW TO MAKE A WIND TURBLE

Perhaps the most important feature of a wind turbine is the fact that the blades are at an angle, and so deflect the wind. This turbine's blades are made from paper cups, which are naturally curved, so they deflect the wind and work well. Take time to make your turbine, waiting for the glue to set where necessary.

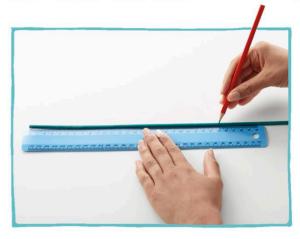
WHAT YOU NEED

Three medium paper cups

Take two medium cups and draw a line on the side of one 7 cm (2³/₄ in) from the bottom. Draw a line 5 cm (2 in) from the bottom of the other cup.

With a pair of scissors, carefully cut around the lines and remove the top part of both cups. Discard the tops – recycle them if possible.

Using the sharp point of the pencil, pierce a hole at the centre of the base of each medium cup. Take care not to pierce yourself!



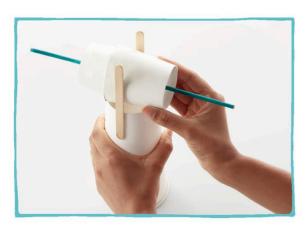
Insert the smaller of the two shortened cups into the larger one. Then squeeze glue into the joint to fix them together and wait for the glue to dry.

Cut the garden stick at the pencil mark.

Score the stick with scissors first, then bend it to snap it. Ask an adult if you find this tricky.

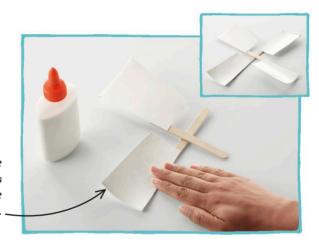
Make a pencil mark 25 cm (10 in) from one end of the garden stick.

This stick
performs the job
of the shaft in a
real wind turbine.
The shaft helps
convert wind
energy into
electricity.

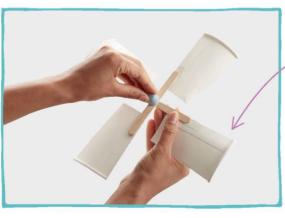


Slide the stick through the holes in the bases of the two joined cups.

Place the tall, uncut cup upside down and glue a lollipop stick to either side of the base, making sure each one reaches the same distance above the cup.


Place the joined cups with the stick through the centre between the lollipop sticks. Hold the cups in place while the glue dries.

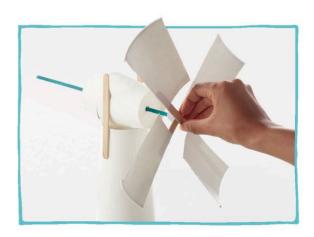
To make the turbine blades, take your remaining medium-sized cup and carefully cut it in half down the side with a pair of scissors.



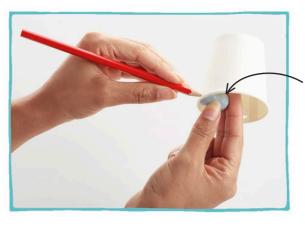
Cut each half in half again so you are left with four equal pieces. Cut the

Place glue at the centre of a lollipop stick and stick it to another to form a cross.

Glue the edges of your blades to the lollipop sticks.



base of each quarter off and recycle these pieces.


Stick a piece of adhesive putty to the centre of the cross. The adhesive putty will secure the blades to the shaft.

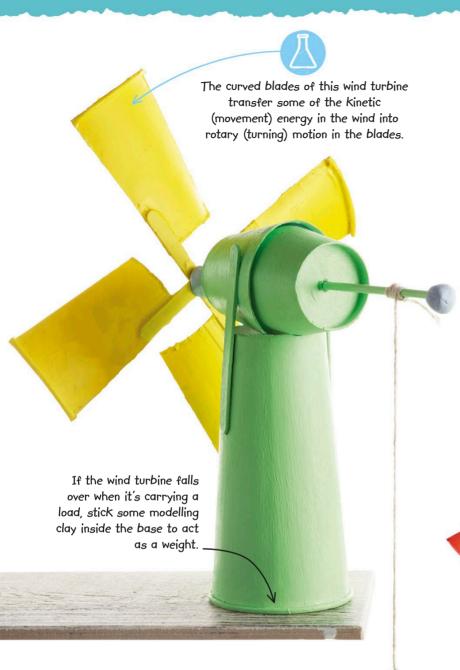
On a real wind turbine, the blades are able to move on their axes to face wherever the wind is coming from.

To attach the blades to the wind turbine, fix the adhesive putty to the end of the stick in the top of the turbine.

Hold some adhesive putty on the inside of the cup to stop you hurting yourself.

Take the small cup and make three equally spaced small holes around the top using a sharp pencil. This will be your load-lifting bucket.

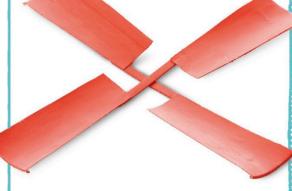
To connect the bucket to the wind turbine, cut a 12 cm (5 in) piece of string. Thread the string through two of the holes in the bucket and tie a knot at either end to secure it in place.


Measure and cut a 40 cm (16 in) piece of string. Thread one end of the string through the third hole in the bucket, then tie it to the middle of the short piece of string.

Tie the free end of the long string to the garden stick. If you want to be sure it won't slip, secure it with a small piece of tape.

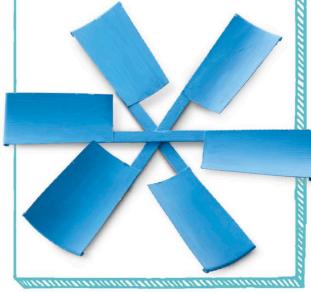
Now paint and decorate your wind turbine in your favourite colours and patterns.

Now you can try it out! Put weights in the bucket and see how quickly it rises when you expose the turbine to wind. If there's no wind, you could use a fan or a hairdryer. What happens to the bucket when the wind stops — does it fall back down or does friction hold it in place?

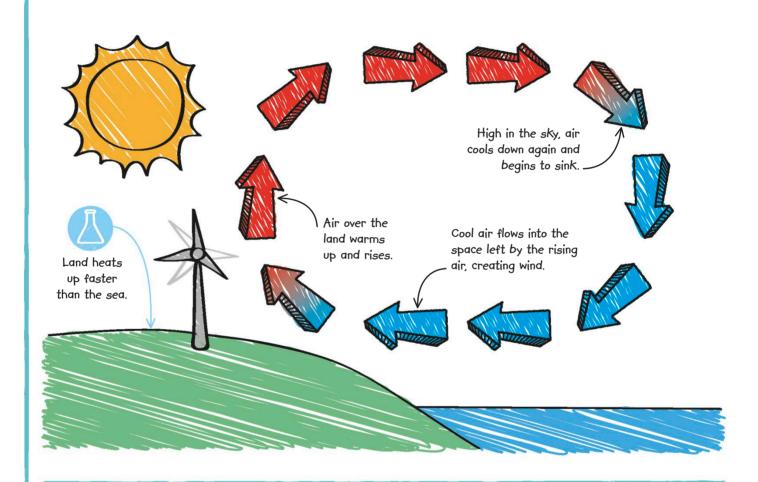

Put different weights in the bucket to see how much your wind turbine can lift.

TEST AND TWEAK

If you have a fan with different speed settings, investigate how quickly the windmill lifts the bucket as the wind speed increases. Try making different kinds of turbine blade to see which turns fastest. To test your designs fairly, use a fan and make sure you have it on the same speed setting each time. Can you make your turbine lift heavier weights?


LARGER BLADES

To make larger blades for your model simply use a larger cup.


MORE BLADES

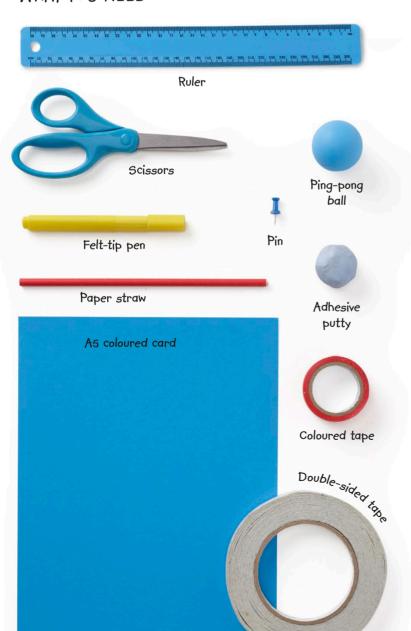
Make a cross out of three lollipop sticks and cut up two cups to make more blades.

HOW IT WORKS

Wind is simply moving air. It is caused by uneven heating of Earth's surface by the Sun. In hot places, the warm air rises, causing cooler air to be drawn into the space left behind and so creating wind. For instance, land heats up under the Sun more quickly than the sea, so on sunny mornings a breeze often blows from sea to land. Wind turbines harness the kinetic energy of the wind to cause a generator inside the turbine to make electricity.

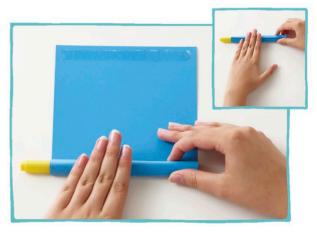
REAL WORLD: TECHNOLOGY GENERATING POWER

Wind turbines use the kinetic energy in wind to generate power. Wind causes the turbine's blades to turn, which causes a generator in the main shaft of the turbine to spin. The generator produces electric energy, which can be used to power things. Wind turbines produce the most energy in windy places, such as hilltops and on the coast.

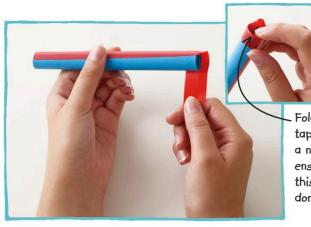


HOW TO MAKE A LEVITATING BALL

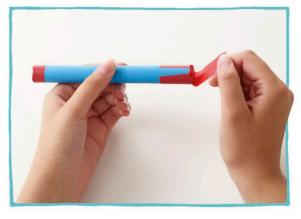
To make the ping-pong ball levitate, you need to create a jet of air. In this activity, you do that by blowing into a cardboard tube attached to a piece of drinking straw. For the strongest jet of air, you need to make sure there are no leaks in the tube or straw.



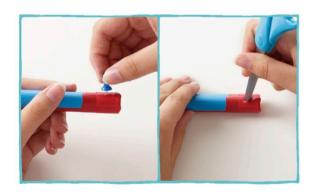
WHAT YOU NEED



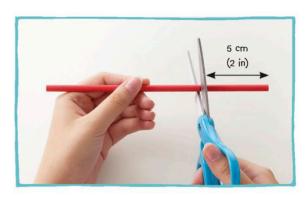

Place a piece of double-sided tape across one of the short edges of the A5 piece of coloured card. Remove the tape's protective strip.



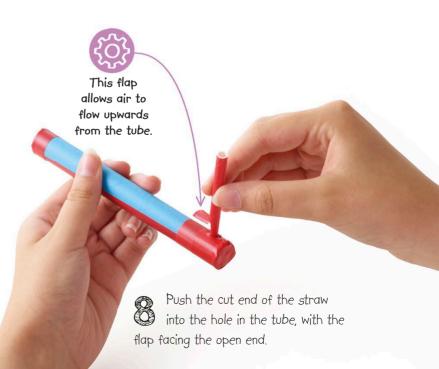
Starting at the short edge without the tape on it, roll the card around the felt-tip pen to create a tube. Press the sticky tape down firmly once you reach the end. Remove the pen.

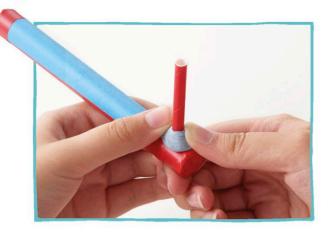


Fold down the tape to form a neat edge, but ensure you keep this end open — don't cover it.



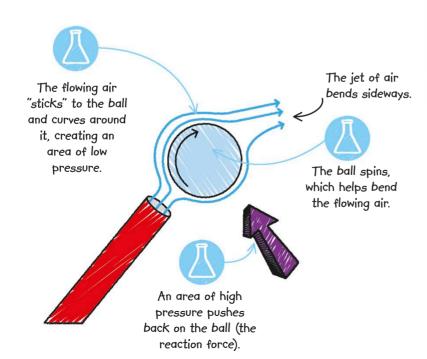
Now close off the other end completely with some more coloured tape. This will ensure that no air can escape when you blow into the other end.


Use the pin to make a small hole through the coloured tape and the card near the closed end of the tube. Gently make the hole a bit bigger with the point of the scissors.



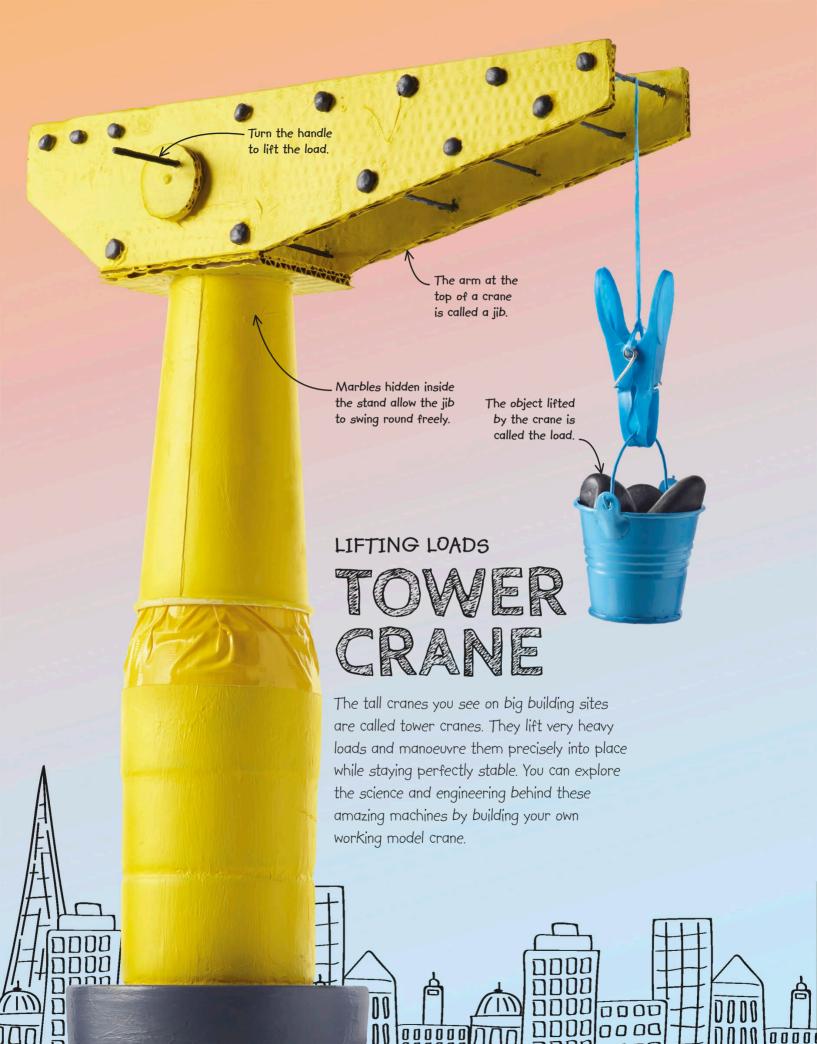
Cut a piece of drinking straw that is about 5 cm (2 in) long. Recycle the rest if you can.

Carefully make two cuts, just over I cm (about ½ in) long, on either side of one end of the straw. Fold up one side in between the two cuts to make a flap.



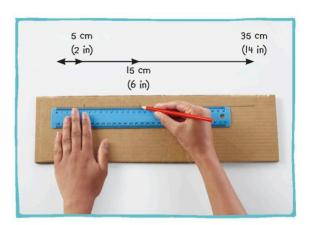
Use coloured tape to secure the flap to the tube. Then wrap adhesive putty around the base of the straw, where it meets the card tube. Don't press so hard that you close off the airway, but do try to block any leaks.

HOW IT WORKS

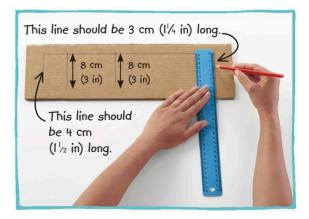

When you blow through the tube, the stream of air pushes the ball, lifting it. Even if you tilt the tube slightly, the ball doesn't drop. This is because air flowing past a smoothly curved object (such as your ball) will curve to flow over its surface and so bend sideways as it leaves. The ball has effectively pushed the airflow sideways, and this results in a "reaction force" that pushes back against the ball. The reaction force stops the ball from falling.

REAL WORLD: SCIENCE THE POWER OF SAILS

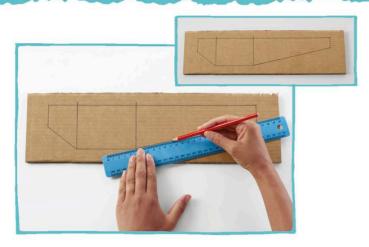
Sails also work by changing the direction of airflow. When wind hits a sail, it follows the curve of the sail and so is deflected in a different direction. This causes a reaction force that pushes the craft the opposite way. By adjusting the angle of the sail, you can sail in almost any direction – even into the wind!


HOW TO BUILD A TOWER CRANE

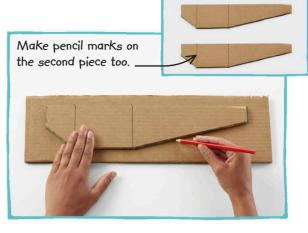
You'll need patience for this build as there are lots of steps. The trickiest part is the jib – the horizontal arm on top of the crane. It's made of two pieces of cardboard held together by toothpicks. The crane's stand is made from heavier materials that keep the whole structure stable.


Time 90 minutes Warning This activity uses small marbles. Don't put them in your mouth. Difficulty Hard

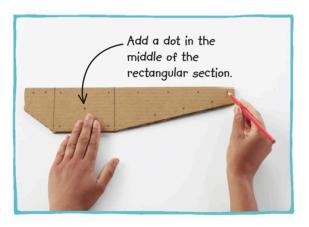
WHAT YOU NEED



Use your ruler to draw a 35 cm (14 in) line on a piece of cardboard, near the top. Then make pencil marks 5 cm (2 in) and 15 cm (6 in) from the left end of the line.



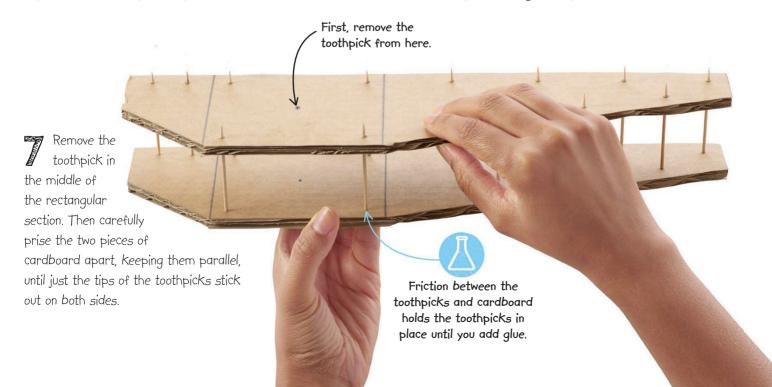
Now add four vertical lines: a 4 cm ($1\frac{1}{2}$ in) line at the left end, two 8 cm (3 in) lines from your pencil marks, and a 3 cm ($1\frac{1}{4}$ in) line on the right.



Join up the ends of the four vertical lines.

The shape you've drawn will form one side of the crane's jib.

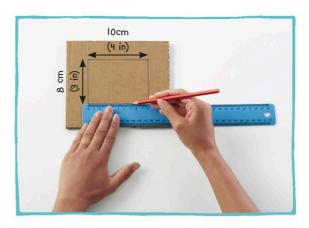
With scissors, cut out the shape and then use it as a template to make an identical shape on another piece of cardboard.

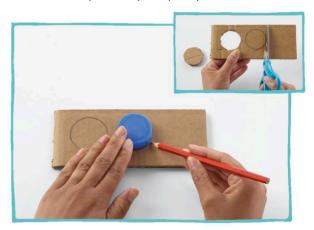


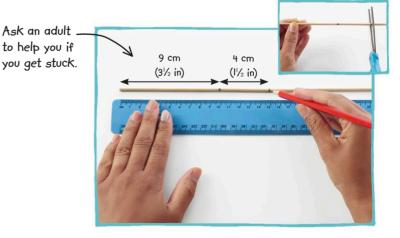
On one of the shapes, add a dot in the middle of the rectangular section. Then draw dots at regular intervals along the edges as shown above.

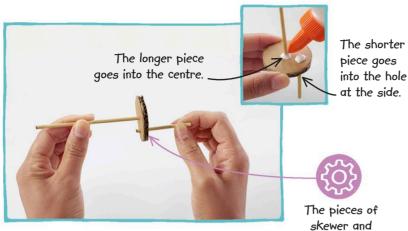
Stack the two pieces of cardboard together.

Using the dots as a guide, carefully push toothpicks through both pieces of cardboard.

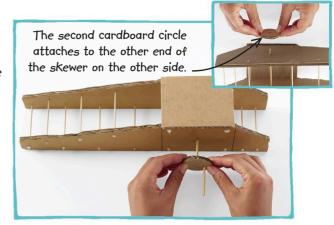

Dab glue on the tips of the toothpicks. Do this first on one side and let the glue dry. Then turn the jib over and do the other side.


Turn your jib upside down and put glue on the short horizontal edges. Press the cardboard rectangle into place and let the glue dry.

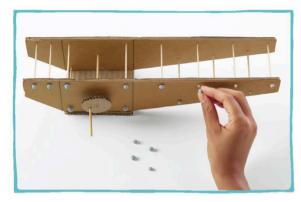

Use a wooden skewer to poke a hole in the middle of each circle. Then, in one of the circles, make an extra hole halfway between the middle and the edge.


To make the base of your jib, draw a rectangle on a small piece of cardboard that is 8 cm by 10 cm (3 in by 4 in).

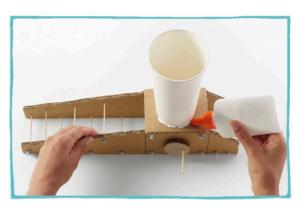
To make your crane's handle, draw two identical circles using the bottle cap as a guide. Then carefully cut out the circles.



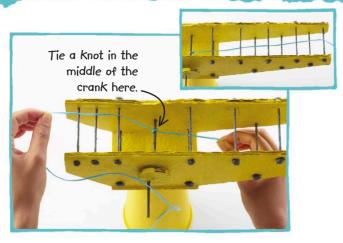
Measure and cut the skewer into a 9 cm ($3\frac{1}{2}$ in) length and a 4 cm ($1\frac{1}{2}$ in) length, by first scoring it with scissors, then snapping it.



Push the two pieces of wooden skewer into the cardboard circle that has two holes. Glue them in position on both sides.

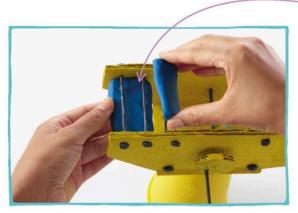


Push the long piece of skewer through the hole in the middle of the jib's rectangular section and out the other side. Glue the second cardboard circle to the other end of the skewer.



Cover both ends of every toothpick with a small ball of adhesive putty, to ensure that no sharp points poke out from the jib.

Turn the jib upside down and glue the bottom of one of the paper cups to the base. Wait for the glue to dry.



Cut I m (3 ft) of string and tie one end to the middle of the crank. Thread the other end between the two rows of toothpicks, as shown.

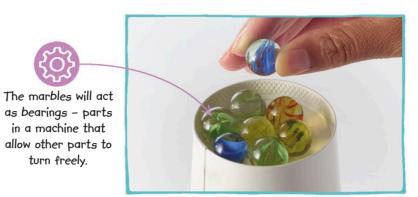
Carefully poke the long end of the string through the spring in the peg. Tie a knot to hold it in place.

Make two thick slabs of modelling clay and sandwich them together over the toothpicks at the rear of the jib.

The slabs of modelling clay form a counterweight — a weight that helps balance the load.

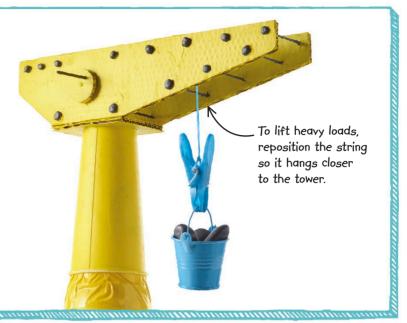
Now paint the flowerpot, which will form the crane's heavy base.

Take the plastic bottle filled with water and paint it with two coats of paint.


The heavy, sand-filled base keeps the crane stable.

Stand the bottle in the flowerpot on top of the saucer and pack sand around it.

Turn the second paper cup upside down, place it over the bottle, and secure in place with strong tape.



Place the marbles inside the lip of the base of the upturned cup. Make sure that there is enough room for the marbles to move a little.

TEST AND TWEAK

See how heavy a load your crane can lift without toppling over. Try threading the string so it hangs closer to the crane's tower – can the crane lift more now? What happens if you make the wheel of the crank handle bigger, so that your handle moves in a bigger circle? Why not try scaling up the design, so that you can lift a heavier load? Or see what happens if you increase or decrease the weight of the counterweight? Perhaps you could use skewers instead of toothpicks, and use a double thickness of cardboard, for extra strength.

HOW IT WORKS

Tower cranes can lift huge loads without toppling because they can control how far along the jib the load is positioned. Any load pulls downwards on the jib, creating a turning force, or torque. The further along the jib a load is, the greater the torque (the torque equals the load's weight multiplied by its distance from the tower). Large loads are lifted close to the tower, and small loads are lifted further out. As a result, both produce a similar torque, which is roughly balanced by the counterweight. They don't need to be perfectly balanced because the crane is also anchored to the ground.

Weight A (counterweight) The crane is perfectly balanced when weight B × distance B = weight A × distance A.

REAL WORLD: ENGINEERING CONSTRUCTION CRANES

In a real tower crane, a steel cable hangs from a mobile trolley that can move back and forth along the jib. By varying the position of the trolley, the operator can change the torque created by the load. In your crane, threading the string over different toothpicks does the same thing. A tower crane can lift up to about 20 tonnes – as much as 20 cars.

AUTOMATON

An automaton is a mechanical figure that appears to move of its own accord. In reality, automata are powered by hand, clockwork, or electric motors. Automata date back more than 2,000 years and were often built to entertain audiences. In this project, you can make a shark automaton that swishes its tail and opens its jaws. These movements are controlled by devices called cams and cranks, which are found in many kinds of machine, including car engines.

The jaw moves

This wooden skewer forms a push rod – a straight piece that is pushed up and down.

Twisting this skewer round transfers energy to the cam, which transfers it to the shark's mouth, making it open and close.

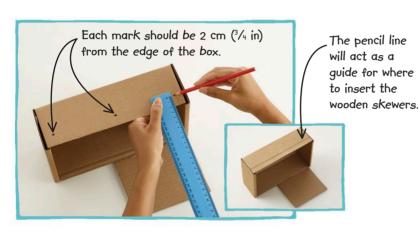
This circular piece of cardboard is a cam. It rotates off-centre on the skewer, causing the push rod to move up and down.

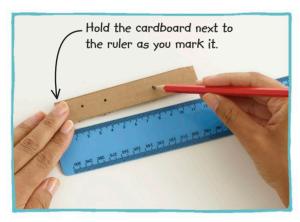
HOW TO MAKE AN

This challenging build will take you a while. You'll need plenty of thick cardboard, as this project has lots of small pieces. You can still do this activity if you don't have a cardboard box exactly the same size as ours, but you may have to adjust some of the other pieces you cut.

WHAT YOU NEED




To make the base of your automaton, draw a rectangle 20 cm by 15 cm (8 in by 6 in) on a small piece of thick cardboard.


On another small piece of cardboard, draw a second rectangle 12 cm by 15 cm (5 in by 6 in). Then cut out both rectangles.

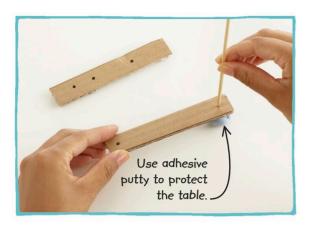
Apply double-sided tape across the middle and around the edges of the larger rectangle. Peel the protective strip off the tape.

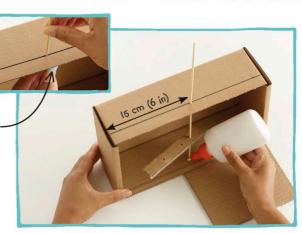
On the top, make three marks 2 cm (3/4 in) from the edge in the middle and at both ends. Draw a straight pencil line to join them.



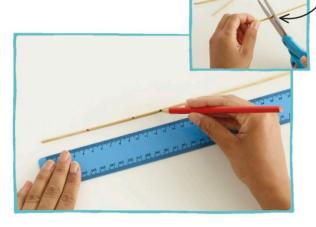
Make three dots along the middle of one of the small rectangles, 2 cm, 4 cm, and 8 cm $(\frac{3}{4})$ in, $\frac{1}{2}$ in, and 3 in) from one end.

Stick the two rectangles together, as shown, leaving part of the large rectangle exposed.


Place the long side of the box onto the exposed part.


To make the mechanism for the automaton's right-hand section, draw two 12 by 2 cm (5 by 3/4 in) rectangles on cardboard. Cut them out.

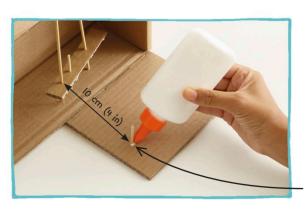
On the other small rectangle, make two pencil dots along the middle, I cm ($\frac{1}{2}$ in) from each end.


Put adhesive putty on the other side of the card to protect your fingers.

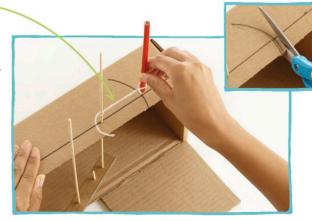
9

Using a wooden skewer, make holes in the dots you made on the small rectangles.

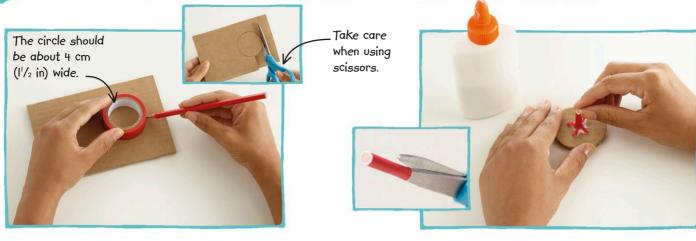
Ask an adult to help if you find this part tricky. Push the skewer through the top of the box 15 cm (6 in) in from the left, then through the hole in the rectangle with three holes, as shown. Poke the skewer into the base of the box and glue it.



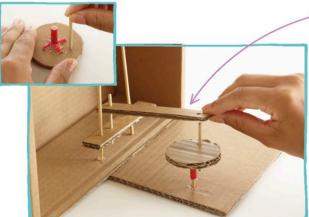
This is the 5 cm (2 in) piece of skewer.


Take another skewer and make marks 5 cm, 10 cm, and 13 cm (2 in, 4 in, and $5\frac{1}{2}$ in) along it. Use scissors to score and break it at each mark.

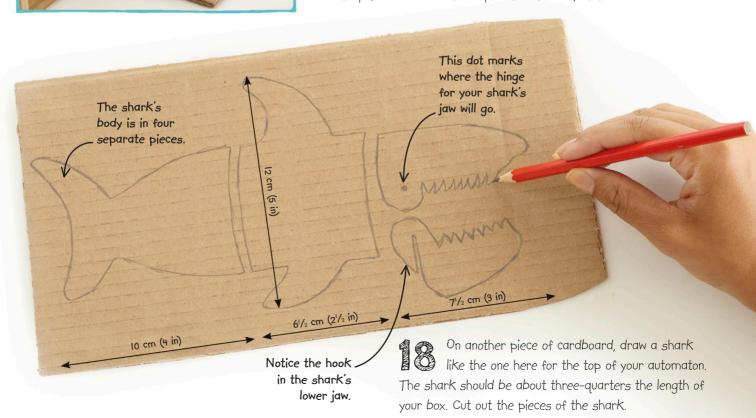
Push the 5 cm (2 in) piece of skewer through the middle hole. Then place a full-length skewer through the remaining hole.

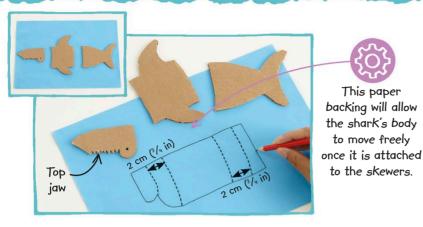

The distance between the skewer and pencil should be 6 cm (2¹/₂ in).

The handle will be placed on top of this piece of skewer.


Push the 3 cm ($1\frac{1}{4}$ in) piece of skewer into the base so that it is 10 cm (4 in) away from and in line with the skewer that goes through the top of the box. Add glue.

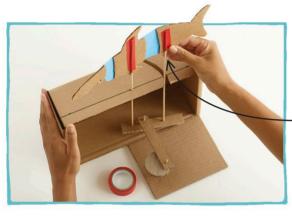
Use a short piece of string tied to a pencil to draw an arc around the skewer that goes through the top of the box. Cut out a I cm (½ in) wide slit along the arc.


To make the handle for the right-hand section of the automaton, draw round a roll of tape on cardboard to make a circle. Cut it out.


Cut a 4 cm ($1\frac{1}{2}$ in) length of straw. Cut four slits at one end and fold them out. Glue these flaps down onto the cardboard circle.

The small rectangle acts as a crank. It turns the handle's rotation movement into a back-and-forth motion.

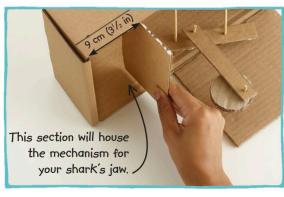
Push the remaining 5 cm (2 in) piece of skewer into the handle close to the edge of the circle. Turn the handle over and place the straw over the small piece of skewer you stuck to the base. Then put the spare rectangle from step 9 over the two small pieces of skewer, as shown.


This paper backing will allow the shark's body to move freely

to the skewers.

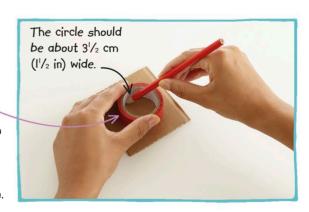
Place the three shark pieces shown above on coloured paper, with gaps of about 2 cm (3/4 in) between them. Draw around them and join the gaps to create the outline shown.

Cut out the paper shape. Attach the pieces of the shark's body to the paper using double-sided tape. Be sure to leave 2 cm (3/4 in) gaps between the top jaw, the middle, and the tail.

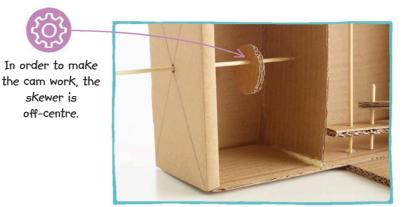


Attach the skewers to the shark's body using coloured tape.

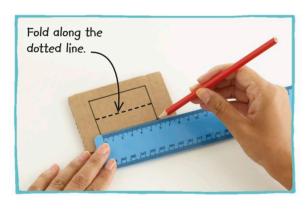
Use tape to attach the shark's body and ail to the two skewers that are sticking up from the box. Snip off any excess bits of skewer that stick out above the shark.


You now need to add a wall to divide your your automaton into two sections. To do this, measure and cut a rectangle that matches the depth and height of your box.

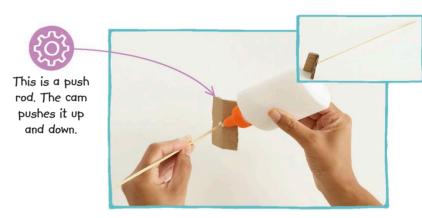
Glue the rectangle of cardboard 9 cm $(3\frac{1}{2})$ in from the left side of the box. Make sure it doesn't prevent the mechanism on the right from moving freely back and forth.


This circle will form part of a cam - a device that turns circular motion into up-and-down motion.

To make the mechanism for your automaton's left-hand section, draw a small circle on a piece of cardboard, using the inside of the coloured tape as a quide, and cut it out.

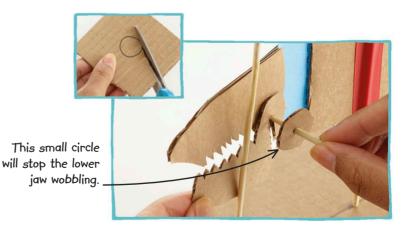


Turn the box on its right side and draw diagonal lines across the top end to find the centre. Push the pointed end of a skewer through the point where the diagonal lines meet.



skewer is off-centre.

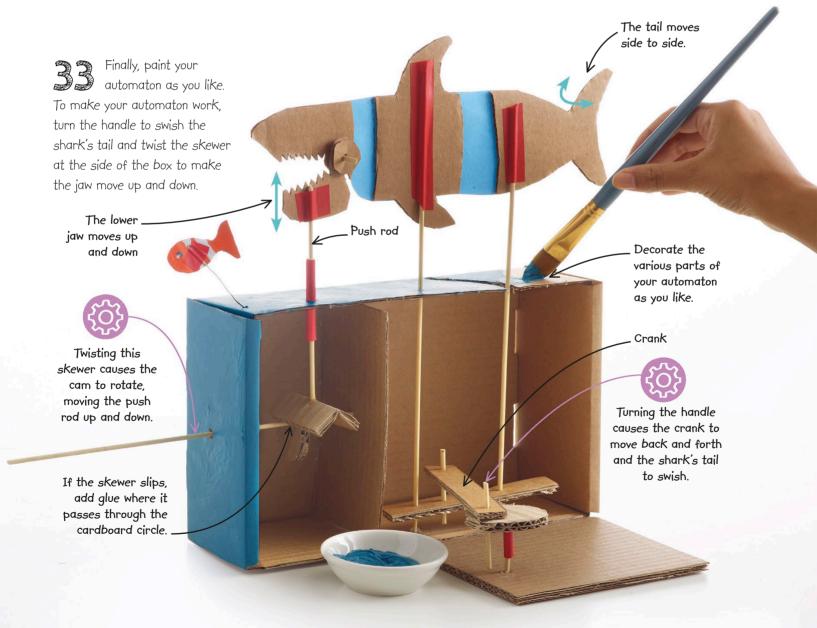
Turn the box back on its base. Push the $(\frac{1}{2})$ in from its edge. Then gently push the skewer's tip through the cardboard wall.


Now draw and cut out a 4 cm by 6 cm ($1^{1/2}$ in by $2^{1/2}$ in) rectangle, and fold it in half lengthways.

Push a skewer through the centre of the folded cardboard rectangle so that it just pokes through. Add a dab of glue and let it dry.

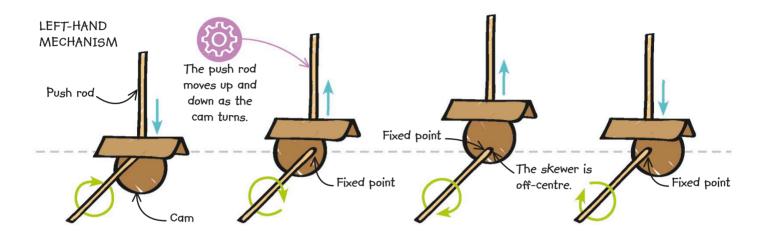
Make a hole on the pencil line that lines up with the middle of the jaw. Push a 5 cm (2 in) piece of straw through the hole, then insert the push rod by feeding it up through the straw.

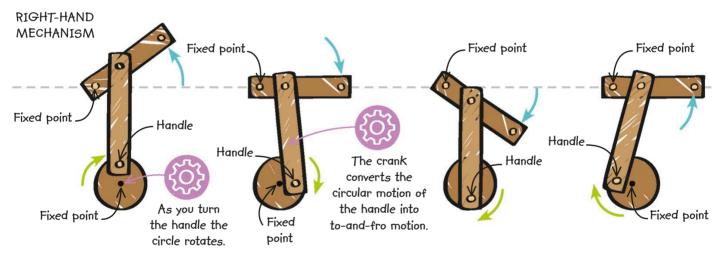
To make the hinge for the jaw, cut out a cardboard circle 2 cm (3/4 in) wide. Push a short piece of skewer through this and through the dot in the upper jaw. Hook the lower jaw in between.



Rest this cardboard on the circular cam below.

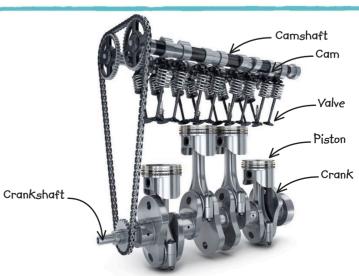
Tape the push rod to the shark's lower jaw, making sure the folded piece of cardboard is resting on the cam inside the box. Snip off any excess bits of skewer.


To decorate your automaton, draw a fish onto a small piece of cardboard, and cut it out. Straighten a paperclip, tape one end to the fish, and stick the other into the top of the box.



HOW IT WORKS

When you twirl the skewer at the left side of the automaton, it turns the cam – the cardboard circle that is set off-centre on the skewer. The cam pushes a folded rectangle and the push rod up and down as it rotates, turning circular motion into up-and-down motion.


In the right-hand section the arm attached to the circle is a crank. As the handle turns, one end of the crank moves round with it, pivoting as it goes and pushing the other end in and out. A crank can turn rotation into to-and-fro motion or do the opposite, turning to-and-fro motion into rotation.

REAL WORLD: TECHNOLOGY CAR ENGINE

Cranks and cams are very important components in most car engines. Pistons push up or down inside the engine, and cranks turn that motion into circular motion that turns the wheels. A set of cams on a shaft open and close valves that allow petrol vapour into the engine and exhaust gases out at just the right moments.

LIQUIDS AND REACTIONS

Getting to know the properties of everyday liquids such as water and oils is a great way to learn about science. In this chapter, you'll turn your kitchen into a chemistry lab. You'll investigate how to keep liquids cool, as well as how to warm them up, and experiment with chemical reactions using a variety of household substances, including vinegar and cabbage juice. You'll also explore the science behind gels and smells by creating your own air freshener.

HOW TO MAKE A BLUBBER GLOVE

For this activity, you need to create a layer of vegetable oil or sunflower oil next to your skin before plunging your hand into icy water. You'll be doing that by making a double layer glove using kitchen bags. When you've finished with the oil, put it in the bin – don't pour it down the sink as it might cause a blockage!

WHAT YOU NEED

Large bowl or bucket of icy water

Turn one of the small kitchen bags inside out, by reaching inside it and pulling the bottom out through the top. Straighten the bag out.

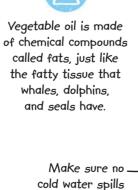
Put your hand inside the inside-out bag and then put it into the other kitchen bag. The zip on the inner bag faces outwards and the zip on the outer bag faces inwards.

Press the zips on the two bags together to create a seal. Make sure you leave one part unsealed.

Apply tape to the parts of the bags you have zipped together and fold it over to seal them together. Do not put tape over the gap you left.

Ask for help if you find it difficult to hold the bag, the funnel, and the bottle of oil.

Put the funnel's spout into the gap between the bags. Carefully pour in enough oil to fill the bag two-thirds full.



Zip the gap up, and use another piece of tape to cover it, sealing in the oil. Fold over the tape.

The tape will help prevent any oil leaking.

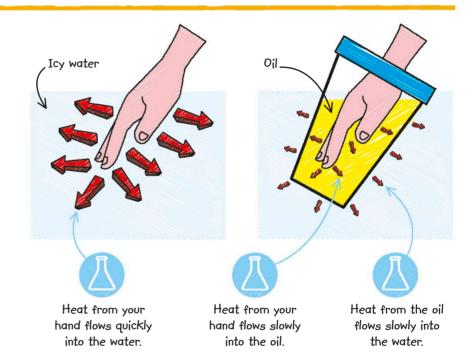
Hold one hand under the icy water, and time how long you can leave it in there before it becomes uncomfortable.

Wait a few minutes for your hand to return to normal temperature, then put it inside the inner bag. Now plunge your hand, inside the blubber glove, into the icy water. Time how long you can keep your hand in the water now, and compare it with the time you recorded before.

into the glove.

TEST AND TWEAK

Nerve endings in your skin give you your sense of hot and cold. They don't detect actual temperatures — instead, they sense the loss or gain of heat from your skin.



Fill one bowl with cold water, one with tepid water, and one with warm water. Keep one hand in cold water for a few seconds, so that it cools down, and the other in warm water, so that it warms up.

Then put both hands in tepid water. The hand that was in cold water will feel warm, while the hand that was in warm water will feel cold, as heat flows either to or from each hand.

HOW IT WORKS

When you plunge your hand into the icy water, heat flows quickly from your skin to the water, and you feel the cold within seconds. When you use the blubber glove, the layer of oil around your hand slows down that loss of heat, because heat flows more slowly through the oil. Materials through which heat passes slowly are called insulators. Like oil, air is a good insulator. Woolly jumpers trap lots of air, which is why they are good at keeping you warm on a winter's day.

REAL WORLD: SCIENCE BLUBBERY ANIMALS

Whales, dolphins, and seals are mammals. That means they are warm blooded. In order to survive in the icy Arctic or Antarctic, where water temperatures are extremely cold, these animals have a thick layer of fatty tissue called blubber. Blubber slows down the loss of heat from their bodies. A blue whale's blubber layer is 30 cm (12 in) thick!

HOW TO MAKE A

You'll make your thermos with two bottles – a glass one to hold the drink and a larger plastic one. It might be a bit difficult to get bottles that nest together well, but try to find a glass bottle that is slightly smaller than the plastic one – it is important that there is a gap between the two bottles.

WHAT YOU NEED

With scissors, carefully make a hole about

I cm (½ in) down from the bottle cap. Cut the
top off the bottle. Ask an adult if you find this tricky.

Cut around the middle of the bottle.
You should end up with three parts: the very top, with the cap, and the top and bottom halves of the bottle.

Stick a lump of adhesive putty on top of the bottle cap, then push the upside-down cap into the bottom of the plastic bottle.

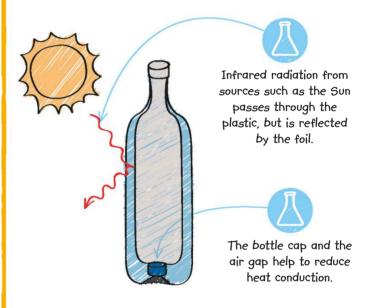
Put the glass bottle on top of the upturned bottle cap inside the plastic bottle. Slip the top half of the plastic bottle over. Then tape the two halves back together.

To insulate the top of your thermos, cut a piece of foil about 20 cm (8 in) long. Fold the foil in half lengthways, and then in half again to create a thick piece.

Cut a piece of foil about 30 cm (12 in) long and wrap it around the glass bottle, including the bottom, so that no glass is visible.

Tape the neck of the plastic bottle to the neck of the glass bottle to create a seal.

Wrap the thick piece of foil around the bottle cap of the glass bottle.

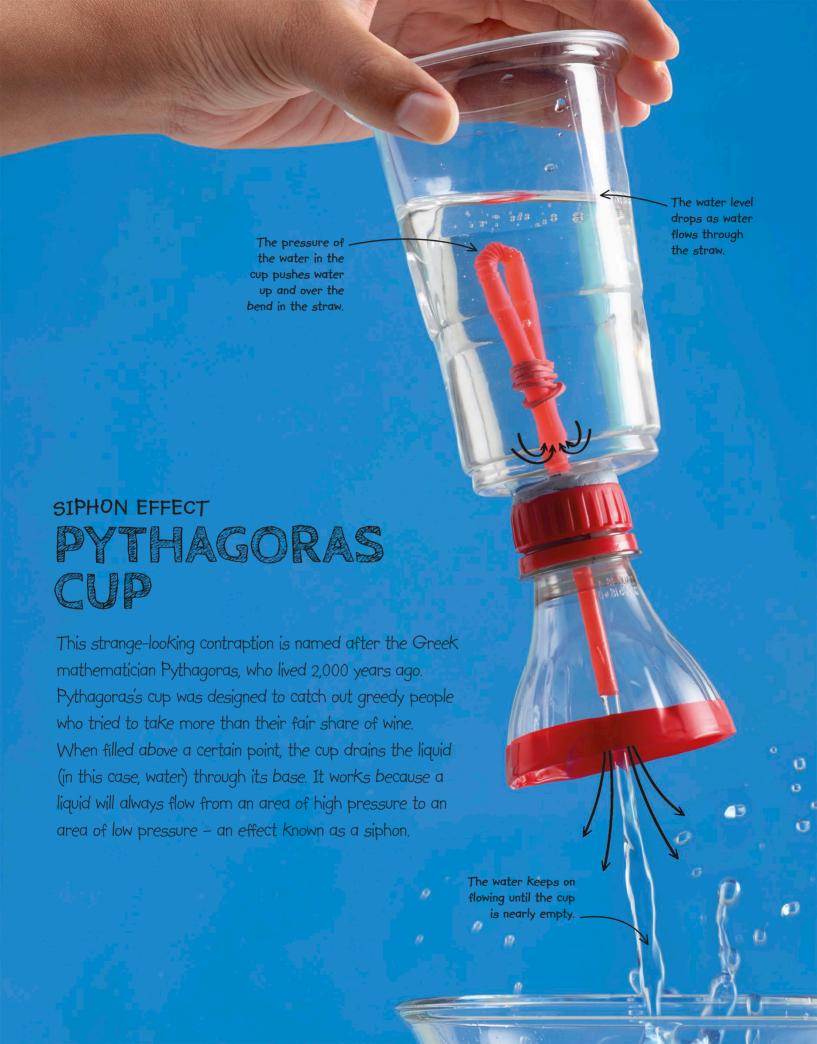


After about an hour, pour out some water from the thermos into another glass.

Compare its temperature with the temperature of the water in the other glass.

HOW IT WORKS

Leave a glass of iced water at room temperature, and the water will slowly warm up. Heat enters the water in two ways: conduction and radiation. Conduction is the transfer of heat between two things that are in contact. Your thermos greatly reduces this effect because the air gap insulates the iced water inside the glass bottle. Invisible infrared radiation also warms the water, but these rays are reflected by the metal foil. The air and foil also prevent heat being lost from warm liquids, too.



REAL WORLD: TECHNOLOGY

In thermos flasks you buy at the shops, the air is removed from the gap between the inner compartment and the outer surface, which creates a vacuum. The vacuum reduces heat transfer to or from the liquid inside to almost nothing. This makes it possible to keep liquids very cold or hot for long periods.

Inner compartment _

HOW TO MAKE A PYTHAGORAS CUP

This activity can be a bit complicated, but the surprising result is worth it, so please be patient and follow the instructions carefully. To make the Pythagoras cup, you'll need to use a lot of plastic. Make sure you recycle it once you've finished.

WHAT YOU NEED

Cut around the bottle, about 7 cm (2³/₄ in) from the top, and keep the top part. Cover any sharp or uneven parts of the cut edge with tape.

Remove the bottle's cap and use the scissors to make a hole in it. Place the cap on top of a lump of adhesive putty to protect the table.

Press the lump of adhesive putty onto the top of the cap. With scissors, make a hole in it, in line with the hole in the cap.

Cut about 2 cm (3/4 in) off the end of the straw furthest from the bendy part. Fold the straw at its bendy part and secure it in place by wrapping it with a rubber band.

Feed the long end of the folded straw through the hole in the plastic cup, making sure that the folded part is inside the cup.

Push the adhesive putty on the bottle cap onto the bottom of the plastic cup. Then use a pencil to pack some more adhesive putty around the straw on the inside of the top of the bottle.

The rubber band will ensure the fold is held close together, but not too tight.

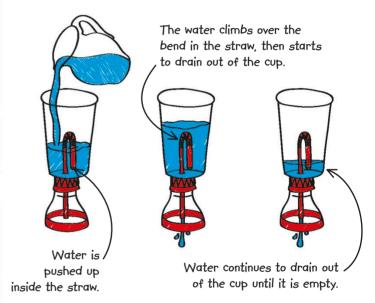
Make a hole in the middle of the bottom of the plastic cup. Use a lump of adhesive putty underneath the cup to protect the table.

The adhesive putty acts as a seal to stop any leaks.

Push the long end of the straw through the hole in the adhesive putty and the bottle cap.



The cup will fill up until the level of the water reaches above the top of the straw. When it does, all the water will leak out!


TEST AND TWEAK

You can explore this effect with two bendy straws, two glasses (one tall, one short), and water. Make a long tube by pushing one straw into the other. Fill the tall glass with water and bend the tube so that the short end of the tube is in the tall glass. Suck a little water out through the long end to start the flow, then let the long end rest in the short glass. Water will drain from the glass until the water level goes down to the opening of the straw.

HOW IT WORKS

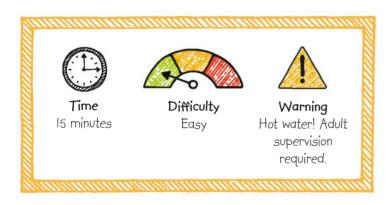
When you're filling the cup, water climbs up the straw, pushed by the pressure of the water, which increases as more water is poured in. When the water level in the cup is greater than the height of the straw, the pressure pushes water over the top of the bent part of the straw. The water keeps flowing, because the pressure at the bend in the straw remains lower than the pressure at the open part of the straw inside the cup. This effect is known as a siphon.

REAL WORLD: SCIENCE TOILET FLUSH

You probably use a siphon most days — when you flush the toilet. The box at the top of the toilet is called a cistern. Inside, water fills up to just above the level of a pipe that leads down into the toilet bowl. When you turn the handle, you release water into that pipe, and all the water from the cistern rushes into the bowl.

GELS AND EVAPORATION

AR FRESHENER


Natural soaps and perfumes often get their scents from essential oils – concentrated liquids (essences) extracted from plants. Some people put drops of essential oil on small dishes so the scent fills a room as the oil molecules evaporate (turn to gas). But once all the oil has evaporated, the wonderful aroma disappears. In these air fresheners, essential oils are held in a jelly-like substance called a gel. They evaporate more slowly, so they can make your room smell great for weeks.

HOW TO MAKE AN AR FRESHERER

For this activity you need a gelling agent, which is what cooks use to make jelly. Gelling agents that work well include carrageenan and gelatine. Whatever you use, check the instructions on the packet so you make it correctly. You'll also need an essential oil. Any kind will work, but choose one you like the smell of!

WHAT YOU NEED

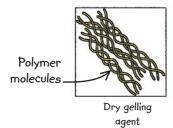
Add one level teaspoon of gelling agent to the glass jar.

Add hot water until the jar is two-thirds full. Stir with the teaspoon until the gelling agent dissolves. Take care to avoid splashing as you stir.

Now for the smelly bit. Add a few drops of an essential oil and stir the mixture again.

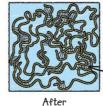
Salt acts as a preservative — it prevents bacteria and fungi from growing on the gel.

Add a teaspoon of salt and stir well until it completely dissolves.


Place the mixture in the fridge overnight to cool down and set. It's now ready to use! After 2-3 weeks, dispose of the air freshener in your food bin.

TEST AND TWEAK

The rate at which substances evporate depends on the temperature. To investigate, place your air freshener in warm and cold places – where is the smell strongest? Add flowers, marbles or polished pebbles before the gel sets to make the air freshener look nicer. If you use flowers, dispose of your air freshener after about a week before they get mouldy.


HOW IT WORKS

Gelling agents contain long, chain-like molecules called polymers. When they dissolve in hot water and then cool down, they form crosslinks with each other, creating a three-dimensional scaffold that holds water in place and keeps its shape – a gel. The essential oil also gets trapped in the gel. As a result, it evaporates into the air more slowly, keeping your room smelling fresh for weeks.

23/23 23/23/23 23/23 23/23 23/23 23/23 23/23 23/23 23/23 23/23 23/23 23/23/23 23/23

Dissolved in hot water

cooling

between molecules

Crosslinks

REAL WORLD: SCIENCE CONTACT LENSES

Soft contact lenses are made from a gel containing water and plastic. As well as making them

comfortable, the gel allows oxygen to pass through to the eye's surface. That's important because the eye has no blood vessels and gets all its oxygen from the air.

ACID AND BASE REACTION

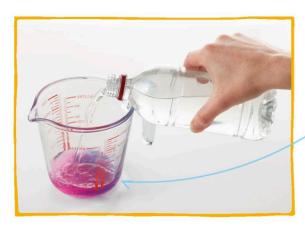
BUBBLE TOWER

Turn your kitchen into a chemistry lab! At the heart of this activity is a chemical reaction between two substances: one called an acid (you'll use vinegar) and one called a base (in this case, bicarbonate of soda). The reaction produces amazing bubbles that rise through a tower of oil and then fall back down. So that the effect is even more impressive, you'll also make an indicator – a colour-changing solution that turns red in acids and blue-green in bases – using some red cabbage.

HOW TO MAKE A BUBBLE TOWER

The first thing you'll need to do is to make the pH indicator. This involves soaking pieces of red cabbage in warm water. Once you've done this, you'll add vinegar, which is an acid. Then you'll carry out the reaction in a vase, which makes it easy to watch the colourful bubbles rise and fall. When you've finished, put the oil in the bin, not down the sink.

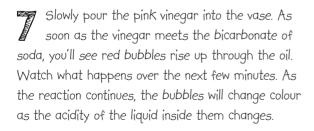
WHAT YOU NEED

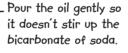

Half-fill the small bowl with warm water. Cut thin strips off the red cabbage, letting them fall into the water. Leave to stand for 10 minutes until the water turns a deep purple colour.

Pour the mixture through the sieve into the large bowl. Put the cabbage leaves into the food recycling bin or compost.

Pour 50 ml (2 fl oz) of the purple solution into the measuring jug. This solution is your pH indicator.

Now add 50 ml (2 fl oz) of vinegar to your pH indicator. Don't take your eyes off the jug - the solution will turn bright pink almost instantly! It turns pink because of the vinegar's acidity.

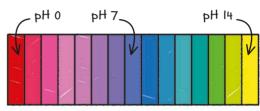

Your pH indicator changes colour when mixed with an acidic substance.



Spoon bicarbonate of soda into the vase or tall glass. Add enough to cover its base.

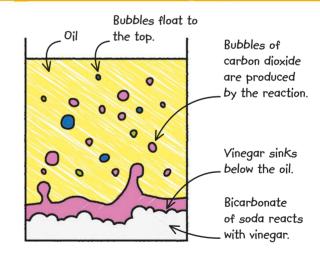
Pour oil over the bicarbonate of soda. You need to add enough oil to fill the vase about two-thirds full.

A chemical reaction between the acid and base creates bubbles of carbon dioxide gas.


TEST AND TWEAK

Why not try mixing your red cabbage indicator with other substances to see if it will change to any other colours. Ask an adult to help you, because some of the chemicals you find in the home can be harmful if they splash on you – especially in your eyes. Never put any household product in your mouth. Try the following: bottled water, lemonade, liquid soap, baking powder, lemon juice.

Scientists use indicators to measure how acidic or basic a solution is on a scale from 0 to 14. This is called the pH scale. Acids have a pH of less than 7, and bases have a pH of more than 7. Water, which is neither acidic nor basic, is called "neutral" and has a pH of 7. Cabbage-water indicator is red in acids, purple in neutral solutions, and turns blue-green or even green in strong bases.


HOUSEHOLD PRODUCTS

RED CABBAGE PH SCALE

HOW IT WORKS

The vinegar solution is acidic. It is also more dense than the oil, so it sinks when you pour it into the vase. The acid reacts with the bicarbonate of soda, producing bubbles of carbon dioxide gas (mixed with vinegar solution), which are less dense than the oil and rise up. At the surface, the bubbles burst and any vinegar solution inside them drops down. The purple pigment in red cabbage is an indicator, a chemical that changes colour depending on how acidic a solution is. At first it is pink, but it turns blue-green as the acid is used up in the reaction.

REAL WORLD: TECHNOLOGY BAKING CAKES

You might have used baking powder to make a cake. Baking powder is bicarbonate of soda mixed with a powdered acid. When it's added to cake mixture it gets wet, and the chemicals dissolve and begin to react. Heat speeds up the reaction, producing large bubbles of carbon dioxide that make the cake rise as it bakes.

COPPER COATING

COPPER REACTIONS

Set up your own chemistry lab in the kitchen! Using just vinegar, salt, some copper-coated coins and a steel nail, you can observe some amazing chemical reactions. The coins will become shiny and new, and the steel nail will become copper-plated and change colour.

HOW TO MAKE COPPER REACTIONS

The vinegar used in these three experiments is a weak acid. It won't harm you if it gets on your skin, but if you splash some in your eyes, it will sting. If that happens, just rinse your eyes with cold water. If you spill the vinegar, or the salt, just wipe them up with a paper towel.

WHAT YOU NEED Ungalvanized steel nail 10 copper-coated coins Glass bowl Teaspoon Table salt Measuring jug Seramic bowl Plastic bowl Paper towel Distilled vinegar

EXPERIMENT 1 - SHINY COINS

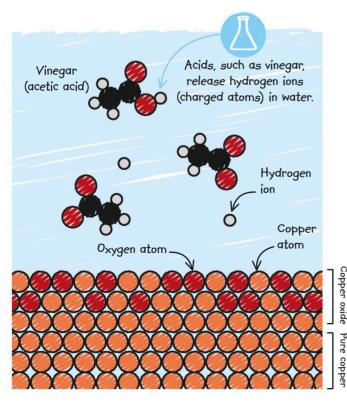
Put 10 coins in the glass bowl.

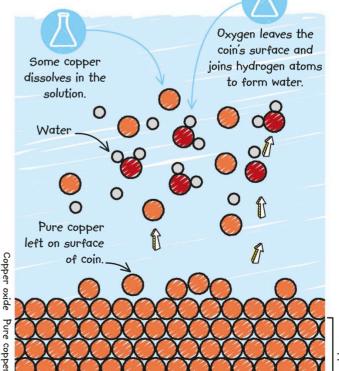
The coins are not copper all the way through, but they are coated with copper.

Pour enough vinegar into the bowl to cover the coins. Vinegar contains a chemical called acetic acid, which will react with the coins.

Now stir in half a teaspoon of salt, and leave for 10 minutes. Salt is made of the elements sodium and chlorine.

The coins will have turned shiny and bright.


Take them out of the vinegar and salt solution. Keep them close by, in a bowl.


HOW IT WORKS

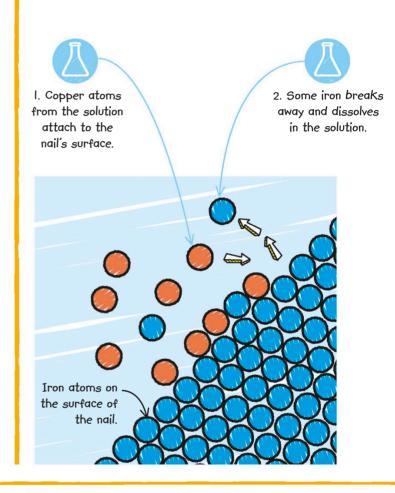
Everything around you is made of tiny particles called atoms. Atoms of different kinds (elements) join together in different ways, forming compounds. In a chemical reaction, atoms can separate, swap partners, and form new compounds. Copper coins are shiny when new but turn dull brown over time because the copper atoms react with

oxygen atoms from the air to form a compound called copper oxide. Vinegar contains a compound called acetic acid, which splits in water to release positively charged hydrogen atoms (hydrogen ions). These react with the copper oxide, stripping it from the coins and revealing the shiny layer of pure copper underneath. Salt speeds up this reaction.

The chlorine in salt helps the acid dissolve the copper on the coins.

LATER STAGE OF THE REACTION

EXPERIMENT 2 - COPPER PLATING


For the next experiment, use the vinegar and salt solution from the first experiment. It contains the copper from the coins. Put the steel nail into the solution.

After about 20 minutes, your nail should have changed colour. The copper from the coins now coats the nail.

HOW IT WORKS

Steel is a mixture of several different elements, but is made mostly of iron. Some of the iron atoms from the nail's surface dissolve in the solution – and some of the copper atoms from the solution (which originally came from the surface of the coins) attach to the nail instead. That's why the nail turns copper-coloured.

TEST AND TWEAK

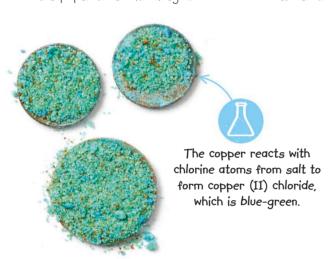
Why not study in more detail the reactions between vinegar, salt, and copper. You can do this by letting the reactions go on for longer. Here are some of the stages of the reaction you might see.

Pour 50 ml (2 fl oz) of vinegar into the jug. Add half a teaspoon of salt. Stir until the salt is dissolved.

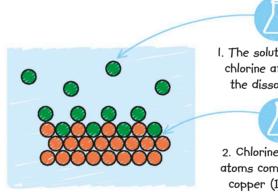
as a sure a constituit de la constituit de

Put a coin in a jar and add the solution. Put the lid on. Leave it for a few days, opening daily to let in air.

EXPERIMENT 3 - MAKING COPPER CHLORIDE


Place a folded piece of paper towel into the plastic bowl. Soak the paper towel with vinegar.

Put one of the copper coins into the bowl with the vinegar-soaked kitchen towel.


Spoon salt on top of the coin, until the coin is completely covered.

Leave it for about an hour or two. You should see a green coating of copper chloride. Wash your hands after touching the coin.

HOW IT WORKS

When you leave a copper coin covered with salt and vinegar for a long time, a chemical reaction takes place. Salt is made of the elements sodium and chlorine. The chlorine reacts with the copper, producing a chemical compound called basic copper (II) chloride. This compound has a bright blue-green colour.

I. The solution contains chlorine atoms from the dissolved salt.

2. Chlorine and copper atoms combine to form copper (II) chloride.

Copper atoms join with chlorine atoms to form green copper (II) chloride.

Market Market and a paragraph and the control of th

As time passes and more air is let in, the solution turns brown.

Finally, the solution goes clear, but sooty deposits of copper (II) oxide can be seen in it.

SHAPES AND STRUCTURES

A building or a bridge needs to be strong enough to stay standing, and it also needs to hold up anything placed in or on top of it. But what makes a structure strong enough to support loads? It's all down to what it is made from, what shape it is, and how it's built. In this chapter, you'll be building some surprisingly strong structures using paper, sand, and drinking straws. You'll even build tall towers from spaghetti and marshmallows!

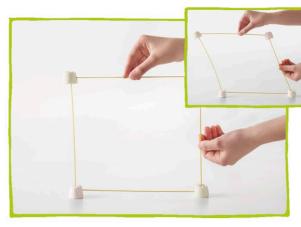
CONSTRUCTION SCIENCE

SPACHETI

TOWER

For a tower to stay standing, it must be strong enough not to buckle under its own weight, and it must have a stable base. This tower is strong because of the shapes used in its construction: triangles. And its wide base stops it toppling over.

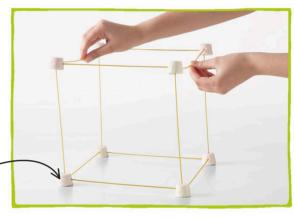
Triangles are strong because they can't twist out of shape.


The main part of the tower is made of two large cubes stacked together.

The tower must stand straight or the force of gravity will tip it over.

> The base carries all the tower's weight.

HOW TO MAKE A SPAGHETTI TOWER

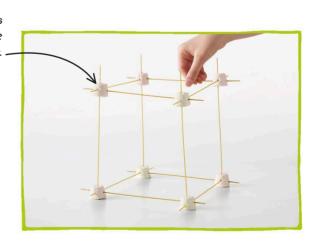

All you need to build this tower is spaghetti, marshmallows, and willpower! The sticky marshmallows hold the ends of the spaghetti in place, and the spaghetti forms a sturdy framework. If you like marshmallows, you'll need willpower to stop yourself eating your building materials!

Begin by making a square. To see why a square isn't a strong shape, push it gently from one side. It leans easily, becoming a parallelogram.

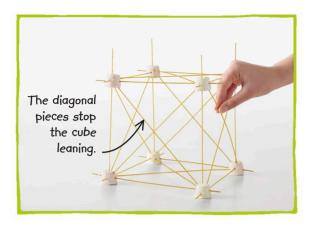
WHAT YOU NEED

Make a cube. Try twisting it gently. Because it's made of squares, you'll find it leans very easily and isn't stable.

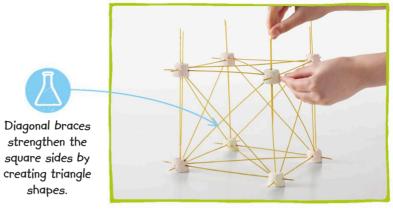
Marshmallows


Sliding the marshmallows inwards helps to make the cube stronger.

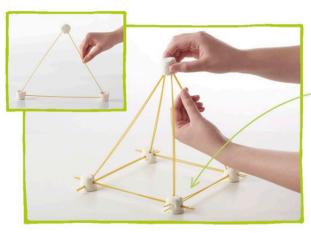
Make sure the


bottom marshmallows sit on their flat bases.

Spaghetti

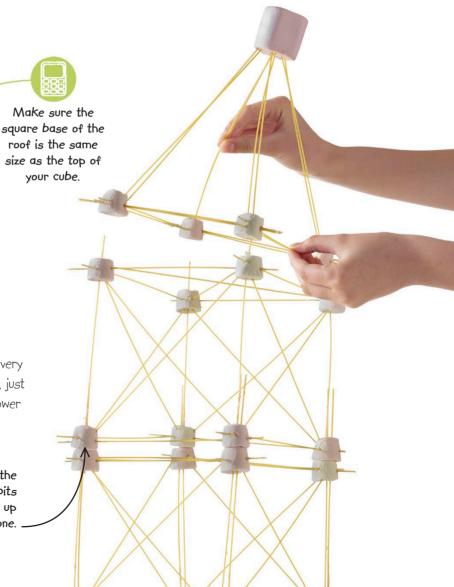


To make the cube stronger, you'll need to add diagonal pieces. To fit them, first make the cube smaller by sliding the marshmallows inwards so the spaghetti strands poke out the other side.

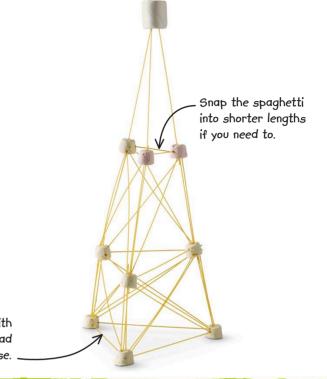


Add the diagonal pieces, called braces, across each face from corner to corner.

Strengthen the vertical edges by feeding a second piece of spaghetti down through the marshmallows at the top corners.

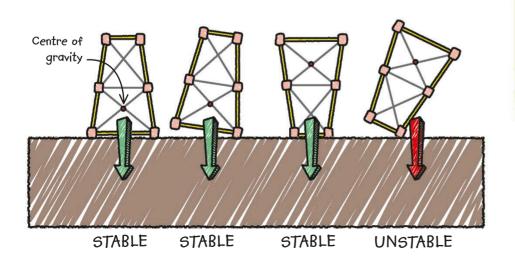


Make the roof, starting with a triangle. You'll notice this is stronger than a square as it doesn't lean. Add more spaghetti and marshmallows to form a pyramid with a square base.


Build a second braced cube and fix it very carefully on top of the first one. Then, just as carefully, fix the pyramid on top. Your tower is now complete!

> Push the base of the top cube onto the bits of spaghetti sticking up from the first one.

TEST AND TWEAK


Now you've mastered the art of building spaghetti towers, why not try different designs? You could try building a tower that is one big pyramid. You'll need to plan the shapes carefully to make sure they all fit together. You might want to try to make your tower much taller. Can you make a tower that stands taller than you? The spaghetti pieces bend less if they're shorter – can you make a taller tower by using shorter pieces of spaghetti? If you want your tower to be stable, you'll need to make the base wide and the top the same width or narrower.

Try building a tower with a triangular base instead of a square base.

HOW IT WORKS

Triangles are the key to the strength of your tower. Unlike a square, which can lean over and turn into a parallelogram when pushed, a triangle can't change shape and so remains upright and rigid. The base of your tower must also be wide. All objects have something called a centre of gravity. This is the midpoint of an object's mass, where all its mass appears to be concentrated. Objects are stable if the centre of gravity is within the base. If an object leans so much that the centre of gravity is outside the base, it will fall.

REAL WORLD: ENGINEERING TOKYO SKYTREE

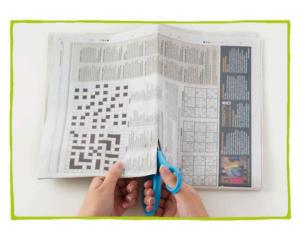
With a height of 634 m (2,080 ft), the Tokyo Skytree in Japan is the tallest tower in the world. It's made of steel tubes arranged as strong triangles, and its base is much wider than its top.

STRONG CYLINDERS

NEWSPAPER STOOL

HOW TO MAKE A NEWSPAPER STOOL

You'll have to collect lots of newspaper to do this activity. If you want to make your stool really strong, you'll need to roll the newspaper very tightly. You might want to ask a friend to help, so that one of you can roll, and the other can stick. If you ever want to dismantle your stool, remove the tape first – then you can recycle the newspaper.

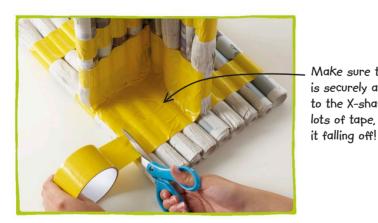

Try to Keep the newspaper rolled as tightly as possible.

Roll up about 20 sheets of newspaper together lengthways. Roll it as tightly as you can. The roll should feel strong and rigid.

Wrap sticky tape around the roll, close to each end. You might want to ask someone to help you, as you need at least one hand to hold the roll. Repeat until you have 25 rolls.

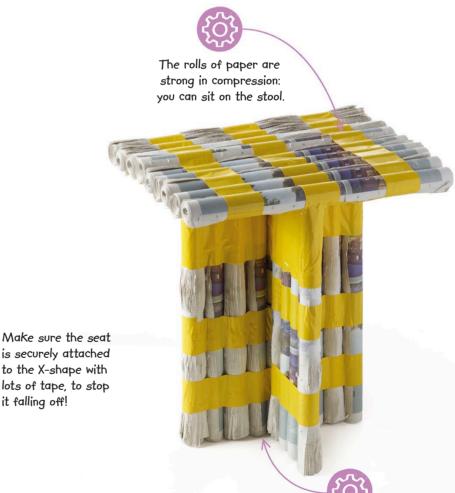
Take another pile of about 20 sheets and cut it in half. You will use the two halves to make two short rolls.

WHAT YOU NEED



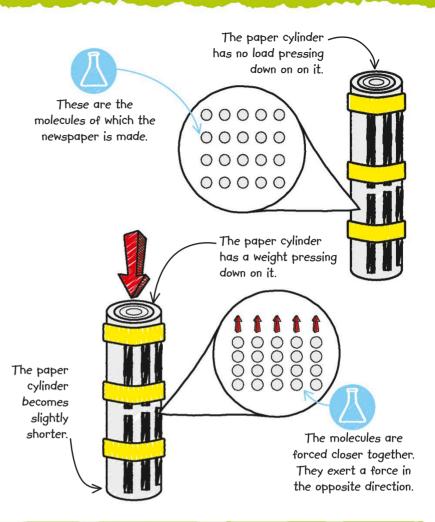
Roll up and tape each half at the ends as before, so you finish with two rolls half the length of the others.

Slot one set of paper rolls into the other, using the gaps left by the short rolls in the middle of each. You should now have an X-shape that stands up on its own.


To make your seat, line up the remaining nine long rolls of newspaper and secure them together with duct tape. Stand your X-shape on top of your joined rolls and use duct tape to attach it.

This duct tape is formed of three layers made from glue, fabric mesh, and plastic to make it waterresistant.

Line up eight long rolls with one short roll in the middle. Wrap duct tape around them, to secure them all together. Repeat this step with another eight long rolls and one short roll.

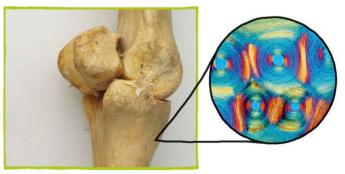

Stand your stool the right way up, so that the row of nine rolls is on top. Your stool is finished. Now, go ahead and sit on it!

The paper rolls are arranged as a cross, giving the stool stability.

HOW IT WORKS

The rolls of paper you used to make the stool are strong in two ways. Firstly, a cylinder has no corners, and so no point is weaker than any other, making it a very strong shape. Secondly, by rolling the paper rolls very tightly, you are increasing the density of the cylinders – packing more matter (stuff) into the same volume (space). If you made the rolls looser so they were much less dense, they wouldn't be as strong.

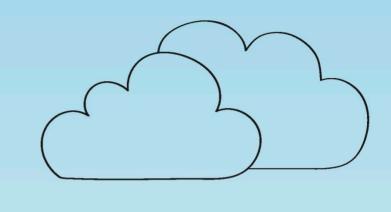
The force to support your weight comes from the molecules that make up the paper. When you sit on the stool, you squash, or compress, the paper slightly. The molecules of which the paper is made are pushed a tiny bit closer together, and that produces an equal force that pushes in the opposite direction – as if there are springs between them.

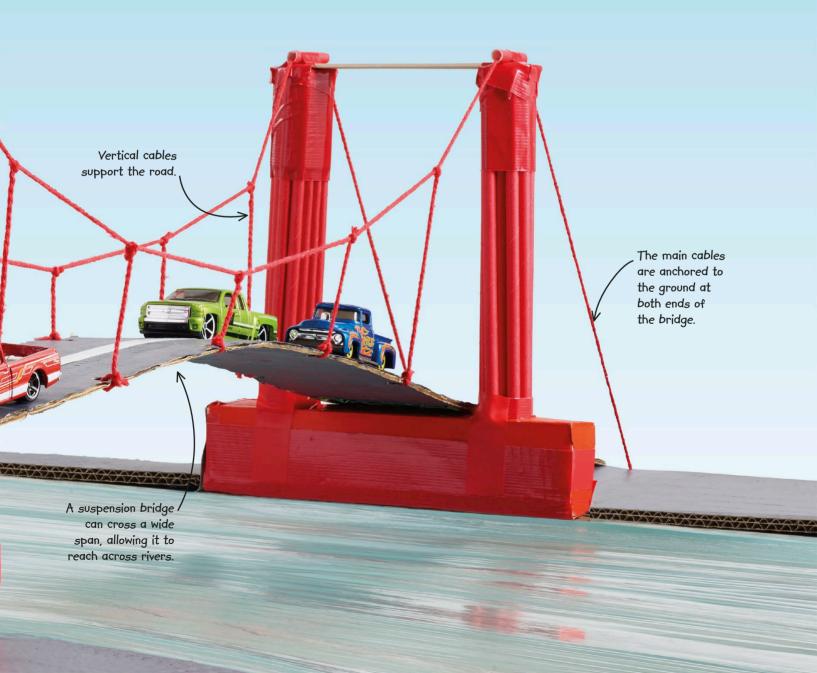


REAL WORLD: ENGINEERING COMPRESSED COLUMNS

You can see cylindrical shapes like the paper rolls you used to make your stool in the columns that support big buildings. Just like your paper rolls, these columns are very strong in compression – even stronger than the paper, as they are made of dense stone.

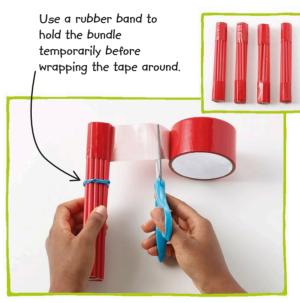
REAL WORLD: SCIENCE HOLLOW BONES


The long bones in your legs that support your weight work in a similar way to the paper rolls in your stool. They are hollow in the middle (to allow for the marrow, where blood cells are made), but very dense and strong around the outside. The dense part of the bone is made up of many small tubes (osteons), each one very weak. Just as several rolls of paper bound together can support a weight, so the clusters of osteons make the bone very strong.


TENSION AND COMPRESSION

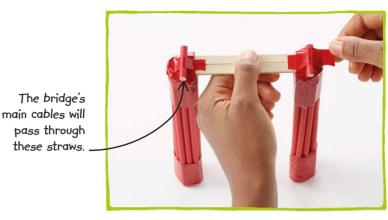
SUSPENSION BRIDGE

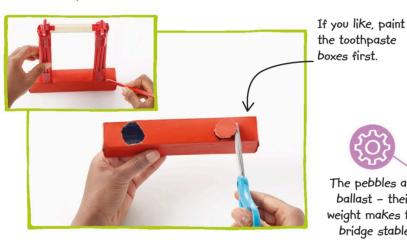
Engineers build huge suspension bridges from concrete and steel cables. The concrete towers support the cables, and the cables support the road, which can carry hundreds of cars and lorries at a time. The best way to understand how these forces work together to make a strong and stable structure is to build your own model suspension bridge. In this activity, you can do just that by using bundles of drinking straws instead of concrete, and string instead of steel cables.


HOW TO MAKE A SUSPENSION BRIDGE

The bases of the bridge's towers are made from toothpaste tube boxes. If you can't find any, you can make boxes the right size from cardboard. The towers are made from bundles of drinking straws. We used 15 in each bundle – if your straws are wider or narrower than ours, use fewer or more straws.

WHAT YOU NEED

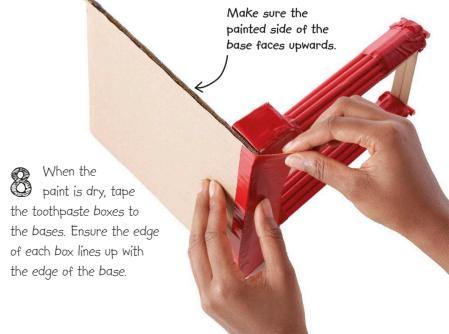

Make a bundle of fifteen straws. Now wrap a piece of wide, strong tape around each end. Repeat three times, to make a total of four towers.


Firmly tape two lollipop sticks side-by-side across the tops of two of your towers. Repeat with the other two towers.

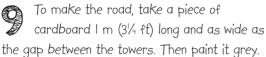
Cut four 21/2 cm (I in) pieces from the last straw. These will hold the bridge's two main cables in place.

Tape each piece of straw to the top of a tower at a 90 degree angle to the lollipop sticks.

Draw around the bases of your towers on one side of each toothpaste box. Cut around the lines and push the towers into the holes.


The pebbles are ballast - their weight makes the bridge stable.

Fill both boxes with the pebbles. You may need to adjust the position of the towers to fit the pebbles around them. Close the boxes and secure them with strong tape.



Cut out two 20 cm (8 in) wide cardboard squares and, if you want, paint the tops grey. These will form the base your bridge stands on.

If you like, paint a white line in the centre of the road.

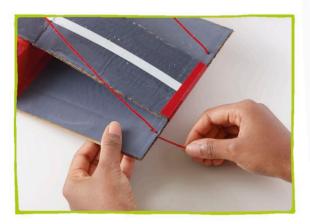
Press the road onto the double-sided tape at both ends, as shown here, and then tape the end of the road to the edge of the base.

Make pen marks 10 cm (4 in) apart along both sides of the road to mark the points where cables will attach.

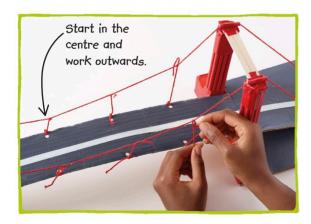
Add a piece of double-sided tape between the two towers on each base.

Remove the protective strip so the tape is sticky.

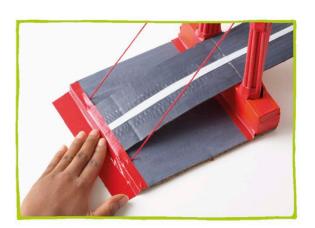
If you put objects on the bridge now, it will sag. That's because the bridge still needs cables to support heavy weights.

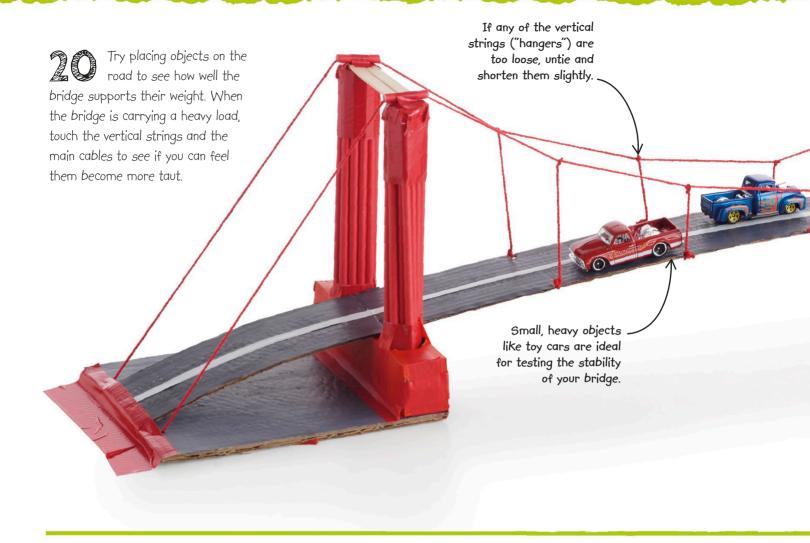

not to punch holes through the edge of the road.

Take care

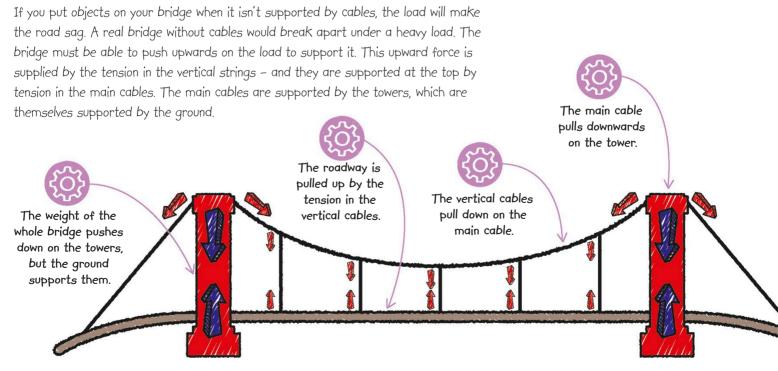

Use a hole punch to make a hole at each mark. Make sure you push the hole punch well onto the road so that the hole isn't too near the edge.

Now make your cables. Cut two long pieces of string, each $1\frac{1}{2}$ m (5 ft) in length. Then cut 10 short pieces of string, each 15 cm (6 in) long.


Cut short slits in the base at both ends of the bridge, and wedge the ends of the main cables into the slits. Don't pull the string tight – it should hang in the middle of the bridge.


Tie the short pieces of string between the holes in the road and the main cables. Starting from the middle, they should be about 3 cm ($1\frac{1}{4}$ in), 5 cm (2 in) and 7 cm ($2\frac{3}{4}$ in) long.

Thread the long pieces of string through the short straws on top of both ends of the bridge. You should then have two parallel "cables".



Pull the main cables through the slits in the bases so that they're taut. Then secure the ends of the bridge to a table or board with tape. Your suspension bridge is now complete!

HOW IT WORKS

Suspension bridges can achieve a wider span than any other kind of bridge.

 The roadway should arch in the middle slightly when the bridge is finished.

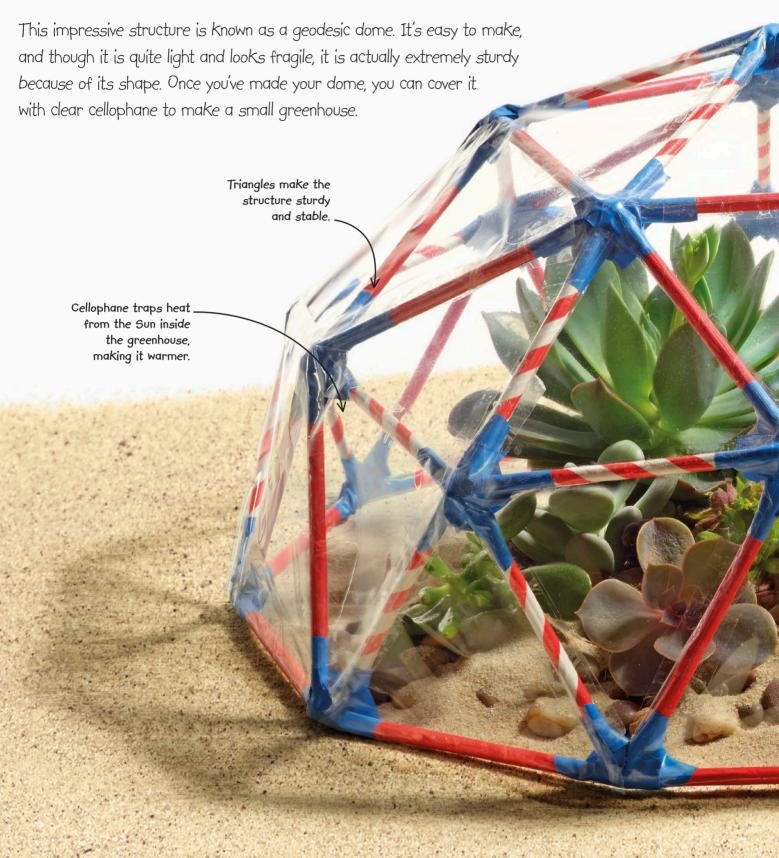
TEST AND TWEAK

Once you know how to build a model suspension bridge, why not try making a longer, taller, or wider one. Can larger bridges carry just as much weight or do they need more cables to support them? Do the main cables need to be anchored to the ground or would the bridge still work if they're only anchored to the road? What's the maximum weight your bridge can support? Load it until it collapses to find out!

The main cables must be firmly anchored at each end of the bridge to maintain their tension.

REAL WORLD: ENGINEERING GOLDEN GATE BRIDGE

Perhaps the best-known suspension bridge in the world is the Golden Gate Bridge just north of San Francisco, USA. Around 112,000 vehicles cross this bridge every day. The suspended roadway is 2.7 km (1½ miles) long and is held high above the sea by two main cables measuring 2.3 km (1½ miles) long.

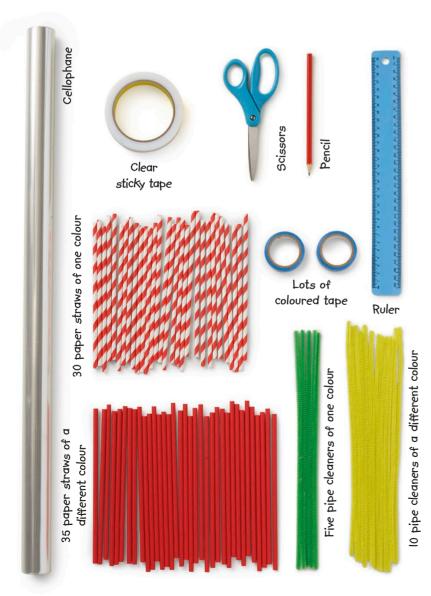


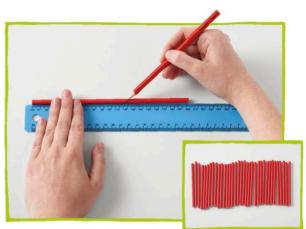
REAL WORLD: TECHNOLOGY CABLE SUPPORTED ROOF

BC Place sports stadium in Vancouver, Canada, has a fabric roof held up by 35 km (22 miles) of steel cables. The cables are supported by 36 steel towers, which do the same job as the towers in a suspension bridge. The fabric roof is strong enough to support 7,000 tonnes of snow and can retract to create an open-air stadium when the weather is good.

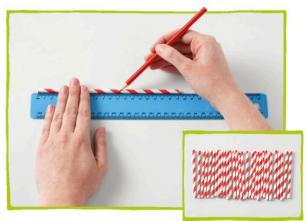
TRIANGLES AND DOMES

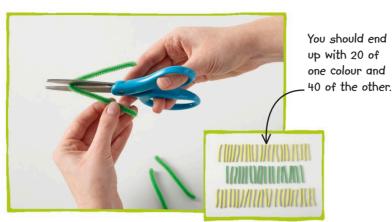
GEODESIC DOME




HOW TO MAKE A GEODESIC DOME

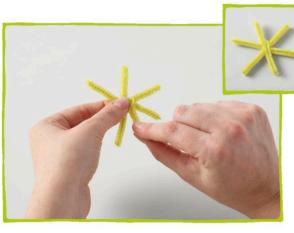
This geodesic dome is made of 65 struts, of two different lengths, joined together by connectors made from pipe cleaners. We've used two kinds of paper straw, to distinguish the long struts from the short struts, and two kinds of pipe cleaner: one for the feet connectors at the base of the dome, and one for the regular connectors. You don't have to use the same colours as we have.

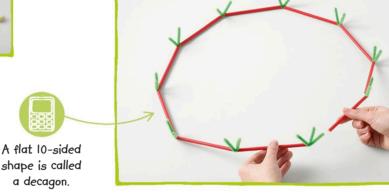

WHAT YOU NEED



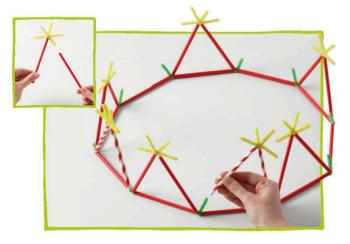
First, make the 35 long struts from straws.


They should be 12 cm (5 in) long. For each one, draw a line first, then cut the straw at the line.

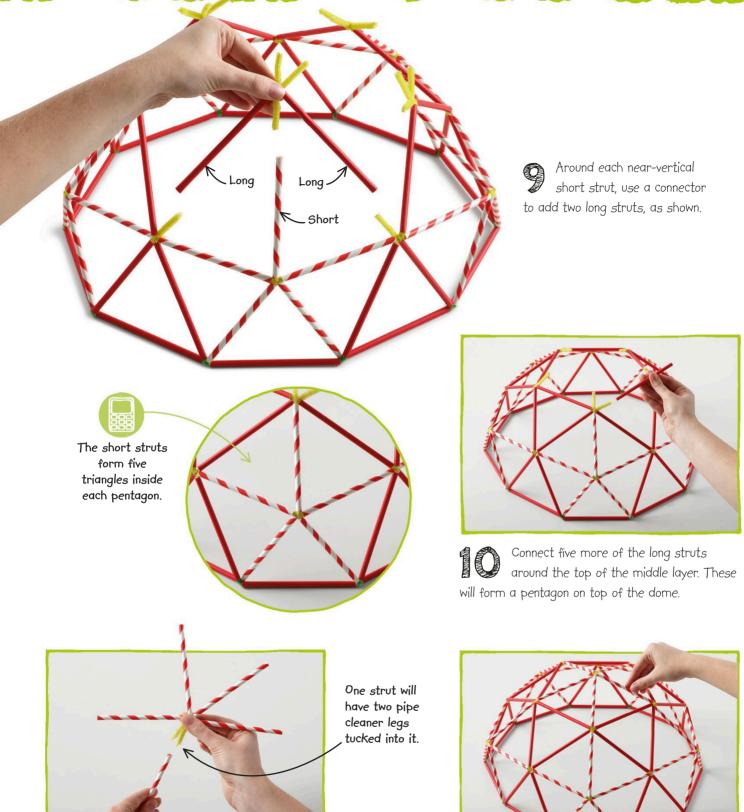

Now make 30 short struts from the other straws. These should be II cm ($4\frac{1}{2}$ in) long. Make sure you recycle the bits of straw you don't need from steps I and 2.


Gather together five pipe cleaners of one colour and 10 of the other. Fold each one in half and cut, and then cut each half in half again.

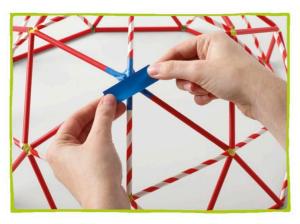
Twist together pairs of pipe cleaners from the pile of 20, just like in the picture here, to make 10 "feet" for your dome.

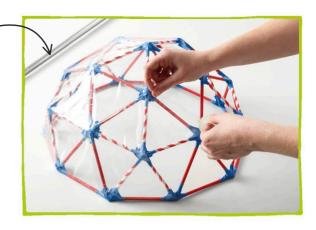


To make the connectors, twist together three lengths of the other pipe cleaner. You'll need 12 of these connectors altogether.

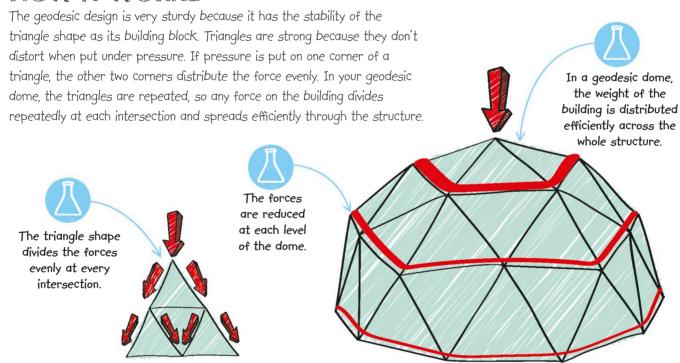

Connect 10 of the long struts by using the pipe-cleaner feet. You'll end up with a 10-sided shape.

Short strut


Use the connectors to begin building up the dome, forming the bottom layer of triangles. Alternate the long and the short struts, as shown.

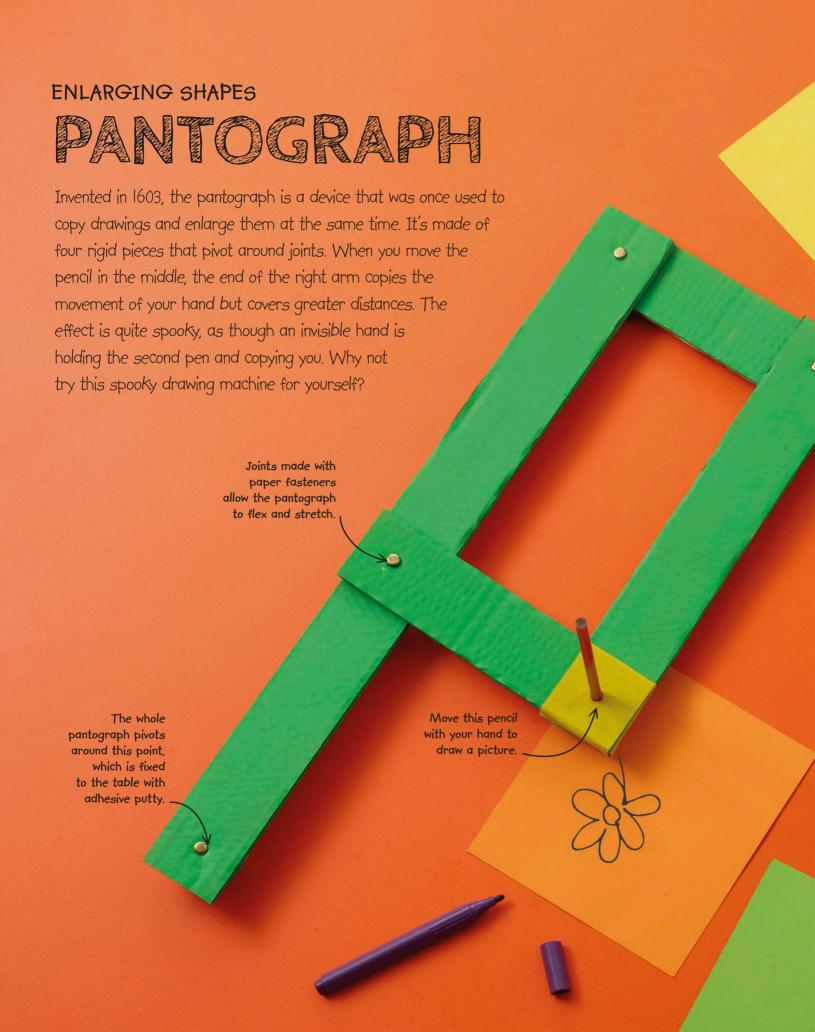

To complete the top of the dome, join five short struts with a connector. Tuck the spare sixth leg of the connector into one of the struts.

Join the five remaining short struts to the spare connectors at the top of the dome. Join the five remaining short struts to the


Wrap short lengths of coloured tape around all the joints to strengthen the structure.

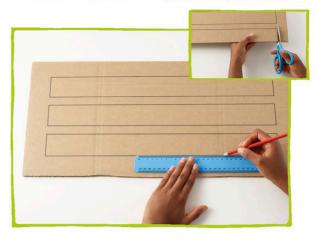
The cellophane covering will turn your geodesic dome into a small greenhouse ready for plants.

Now cover your dome in cellophane and secure the pieces in place with clear sticky tape. Your geodesic dome is complete!

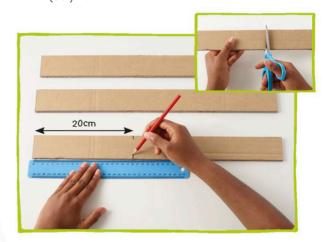

HOW IT WORKS

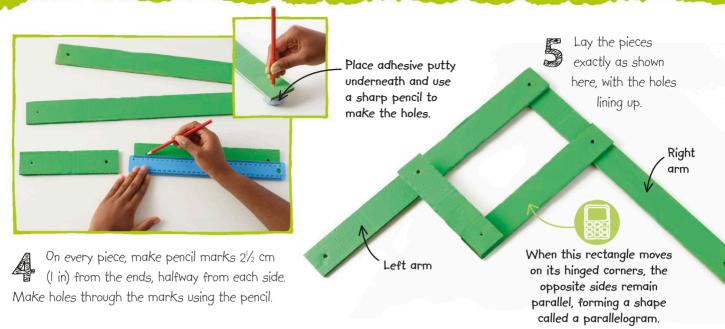
REAL WORLD: SCIENCE BUCKMINSTERFULLERENE

In 1986, scientists discovered a form of the element carbon whose atoms are arranged in a geodesic shape of pentagons and hexagons. This form of carbon was named buckminsterfullerene, after one of the most important designers of geodesic domes, the American architect Richard Buckminster Fuller.



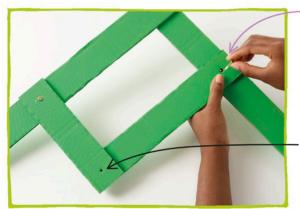
HOW TO MAKE A PANTOGRAPH


Your pantograph is made of four rectangles of cardboard joined by paper fasteners. It's important that the cardboard can move freely at the joints. The pantograph works best if you draw a simple picture in a single, continuous line without lifting the pencil.


Use the pencil to draw three rectangles on the cardboard, each 50 cm (20 in) long by 5 cm (2 in) wide. Cut them out.

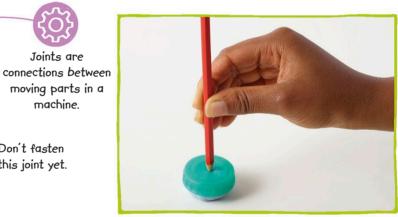
Use a pencil to mark a line on one of the rectangles, 20 cm (8 in) from the end. Cut across this line to make two rectangles, one 20 cm (8 in) long and the other 30 cm (12 in).

You now have all four pieces for your pantograph. If you like, paint them and allow the paint to dry.



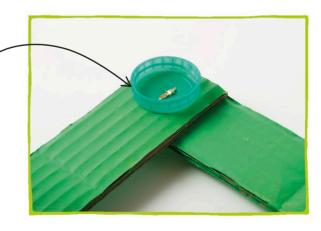
Joints are

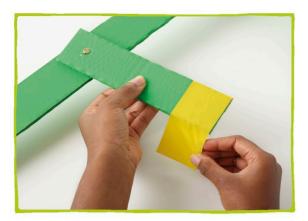
moving parts in a machine.

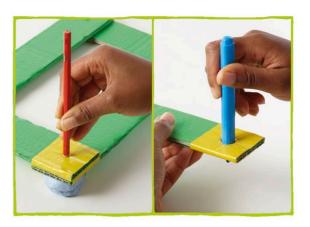

Use a paper fastener to secure the bottle cap.

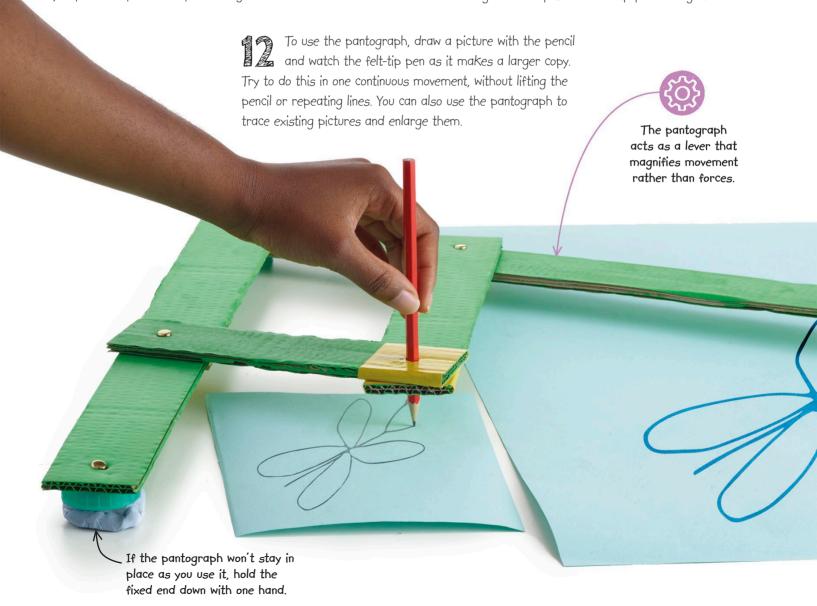
Don't fasten this joint yet.

Poke paper fasteners through the two holes shown and fold the metal wings back. Don't

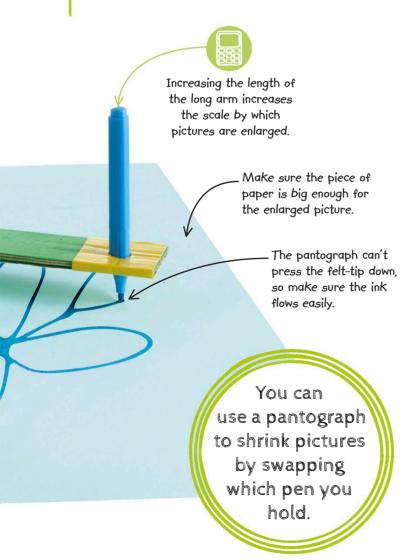

fasten the other holes yet.

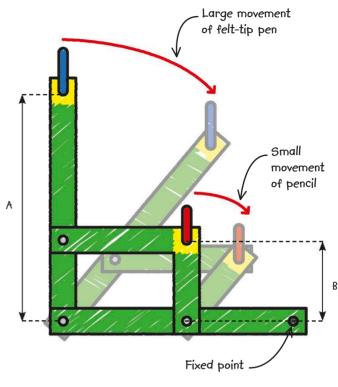

Place a bottle cap on a lump of adhesive putty and use a sharp pencil to make a hole in it. Do the same to the other bottle cap.


Use a paper fastener to fix a bottle cap to the end of the left arm. Push in a lump of adhesive putty. This will secure the arm to the table.


Fix the other bottle cap underneath the joint between the two arms. This will keep the cardboard parts raised above the table.

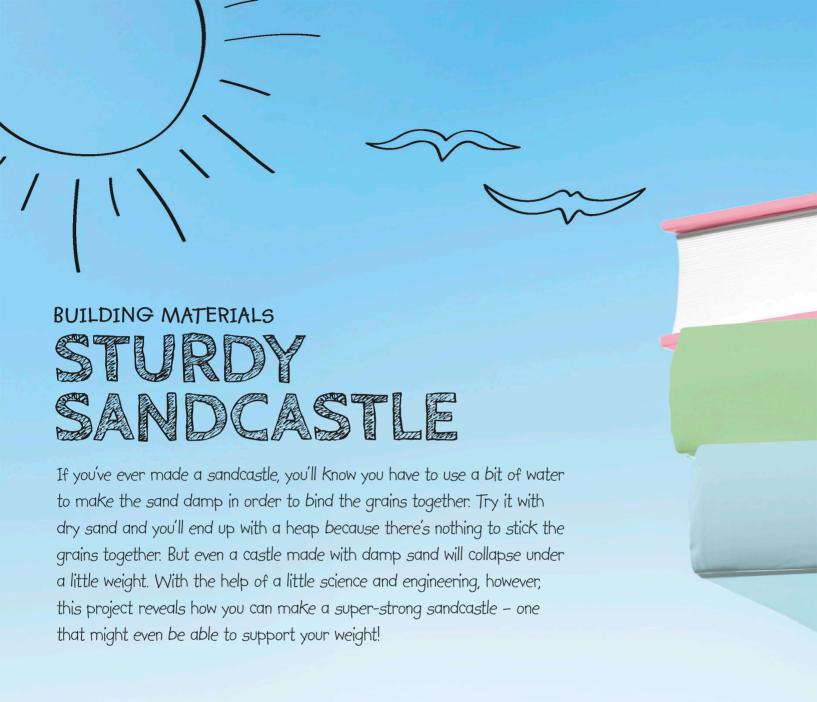
Wrap tape around the ends of the two short bits of cardboard and the free end of the right arm. This will stop the cardboard splitting when you push the pencil and pen through.

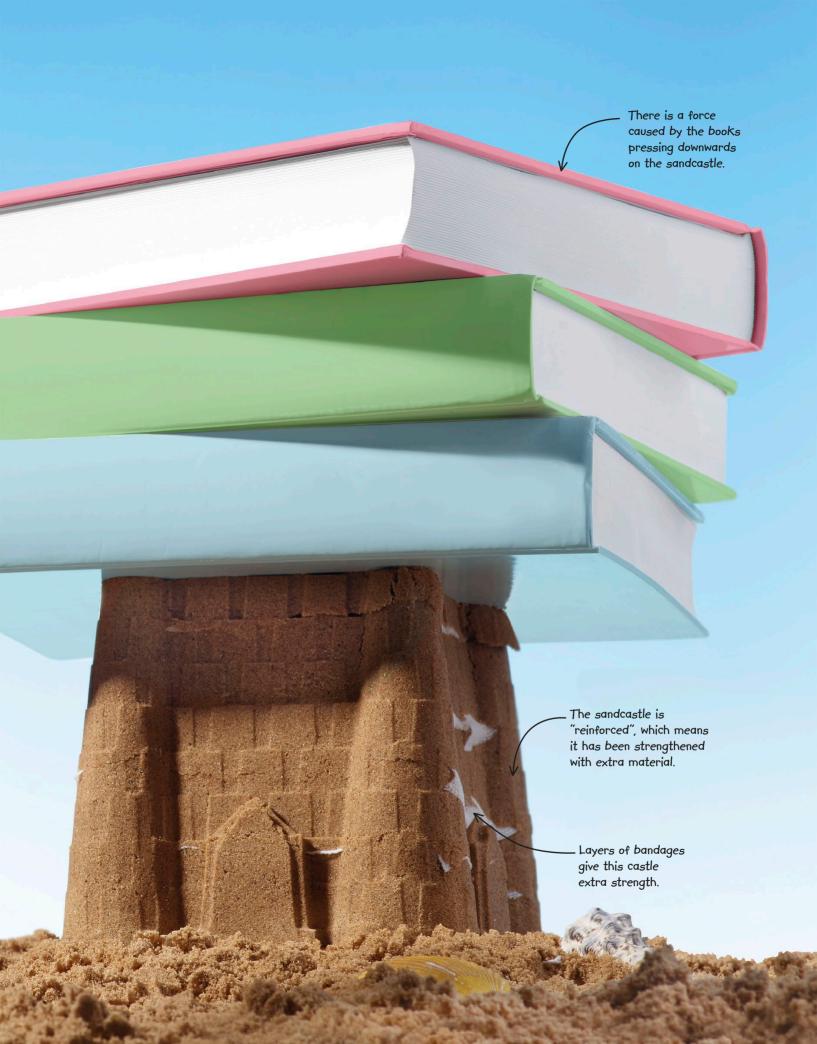



Push the pencil through the taped ends of the short bits of cardboard and leave it in place. Then make a hole through the end of the long arm and push the felt-tip pen through it.

HOW IT WORKS

The pantograph is an example of a mechanical linkage – a machine made of rigid pieces that are joined but can still move. A mechanical linkage changes one kind of movement into another. In this case, the movement you put in is magnified. In the centre of the pantograph is a parallelogram – a shape whose opposite sides are parallel (lined up in the same direction). The pencil and pen are mounted on parallel parts, so they trace out the same shape as they move. However, because the pen is on a longer arm, the shape it draws is magnified. The magnification equals the length of the pen's arm divided by the length of the pencil's arm (A ÷ B in the diagram).




REAL WORLD: SCIENCE UMBRELLA

Mechanical linkages are found in many different machines and devices, including something you probably have at home: an umbrella. When you push up on the sliding part inside an umbrella (the rider), the rods and pivots inside the umbrella magnify the movement of your hand to lift up the entire canopy, giving you shelter from the rain.

HOW TO BUILD A STURDY SANDCASTLE

There is a special ingredient that makes this sandcastle strong: strips of bandage. Apart from that, it's just like most sandcastles: you fill a bucket with damp sand, then turn it over. If you do this activity on a beach, make sure you take the bandages with you afterwards and dispose of them carefully. You can leave the sand behind, though!

WHAT YOU NEED

Pour enough water into the sand to make the sand slightly damp. Stir the mixture thoroughly, so that there is no dry sand and no excess water.

Use the trowel to make a layer of sand about 5 cm (2 in) deep in the bottom of the bucket. Spread the sand evenly across the bucket's base.

Carefully cut several strips of bandage that are about as long as your bucket is wide. You can always cut more if you run out of pieces.

Put a few strips of bandage on top of the layer of sand. Place them so that they overlap slightly, in order to cover the sand completely.

Bandages are thin but strong. They are made of a fine mesh of woven fabric.

Keep adding layers of damp sand 5 cm (2 in) deep, with strips of bandage between them.

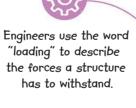
Press down each layer firmly.

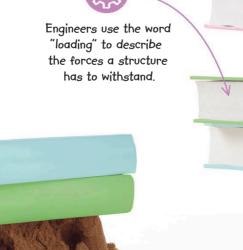
Don't worry too much if your bucket is an odd shape, like this one. Just cover as much of each sand layer as possible.

Fill the bucket to the top with sand. Cover this final layer with strips of bandage that extend slightly over the edge of the bucket.

With one hand over the bandages to stop them falling off, carefully turn the bucket upside down and place it on the ground or a table.

Gently tap the sides of the bucket, and then lift it away, just as you would if you were making an ordinary sandcastle.




Your sandcastle is ready to test! To see how sturdy it is, gently place one of the heavy books on top.

This is what happens to a normal sandcastle when you put books on it!

Load more books on top of your sandcastle. See how heavy a load your sandcastle can support before it collapses!

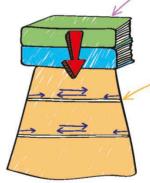
> Place the books carefully on top of your sandcastle!

TEST AND TWEAK

Your sandcastle should be able to support quite a heavy load, but can you make it even stronger? What happens if you replace the strips of bandage with paper, plastic bags, or bits of an old T-shirt? Does coarse or gritty sand make a better sandcastle than fine sand? Could you make a castle from gravel instead of sand?

HOW IT WORKS

Sand grains are made of rock and shells that have been broken down into tiny pieces by the action of moving water in the sea or in rivers. An ordinary sandcastle would collapse if you placed a load on top of it, because the sand grains can easily slip sideways over each other. But your sandcastle can support a load because the bandages increase the friction between the grains as they slip sideways. Friction is the resistance created when two or more objects are pushing past each other. Increasing the friction between the bandage strips and the grains prevents the grains from slipping sideways.


The heavy load pushes the sand grains together.

Without reinforcement, there is little friction, or resistance. The sand grains slip sideways, collapsing into a pile.

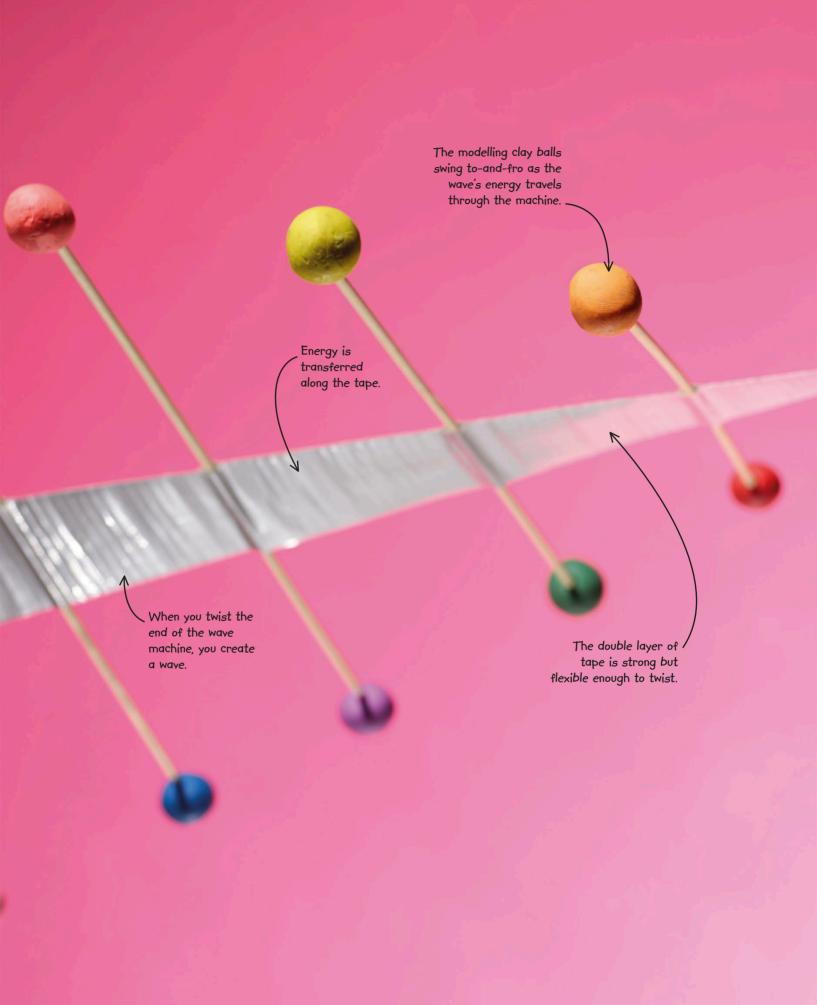
ORDINARY SANDCASTLE

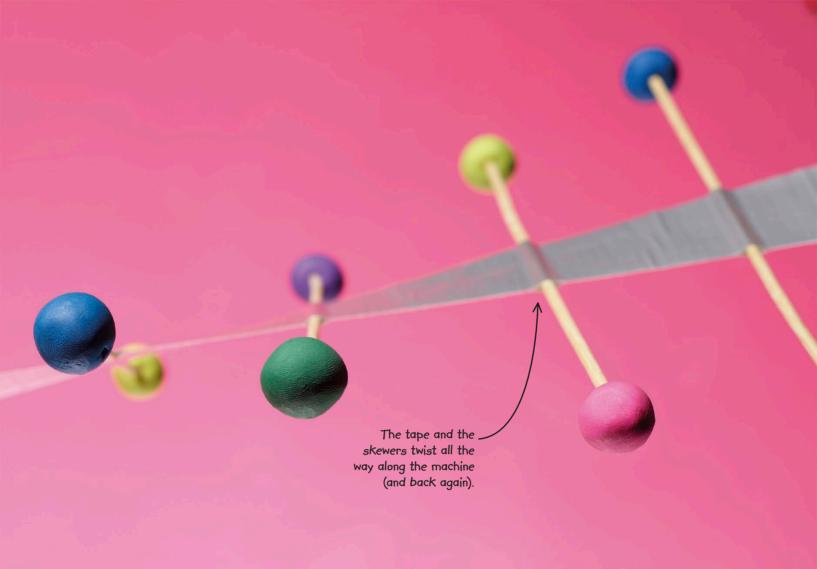
With reinforcement, the sandcastle is able to support a heavy load.

The strips of bandage increase the amount of friction in the structure, so the sand grains can't slide sideways as easily.

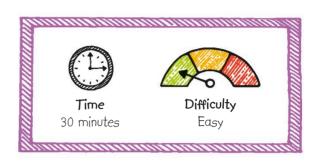
REINFORCED SANDCASTLE

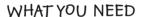
REAL WORLD: ENGINEERING STABILIZING SLOPES


The combination of sand and strips of bandages used to build your sandcastle is similar to a technique used by engineers to create reinforced structures. They use grainy materials like soil or sand and pack them between strips of mesh. Where a motorway carves through the land, engineers use this technique to reinforce unstable slopes beside the road. Seawalls protecting coastal areas are also built in this way, as they are able to absorb the impact of waves and prevent coastal erosion.



Waves are associated with water, but some types of energy, such as light and sound, also travel in waves. In this chapter, you'll learn all about waves by making your own wave machine. You'll also study light with a scientific device called a spectroscope. The sounds we hear are made by waves of vibrations that disturb the air. You'll make musical sounds, by creating your own harmonica and guitar, and hear the sound of bells – with spoons!


TRANSFERRING ENERGY


WAJE MACHNE

Throw a stone in a pond and it makes waves. It might look like circles of water are rushing outwards, but in fact the water is only moving up and down as energy transfers through it. Waves transfer energy from place to place, which makes them very useful. We can use them to send and receive information, to heat up food, and to surf! This twisting wave machine lets you see waves in action.

HOW TO MAKE A MACHINE

You'll make your wave machine from duct tape and wooden skewers. The tape is very sticky and can easily become stuck to itself, so take your time. The skewers have a sharp point at one end, so be careful. You'll need to work somewhere with plenty of space because your wave machine will be about 3 m (9 ft) long!

Wooden skewers

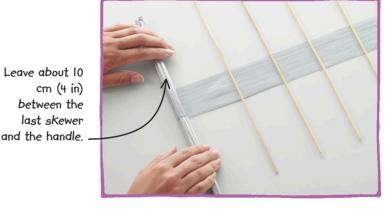
Modelling clay

First you'll make the handles. Carefully cut a length of tape about twice as long as a skewer. Lay it down on the table sticky side up.

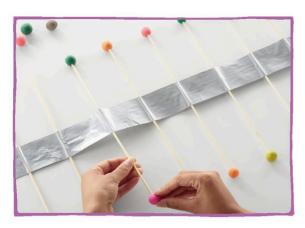
Put 10 skewers onto the tape's centre. Roll the tape tightly round the skewers and fold the ends over, then repeat to make another handle.

Pull out some of the tape, with the sticky side facing upwards. Place one handle onto the tape and roll it forwards a short way to secure it.

Roll out another metre (3 ft) of tape and keep adding a skewer every 5 cm (2 in).

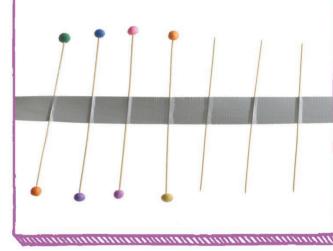

Repeat this step so your wave machine is about 3 m (9 ft) long.

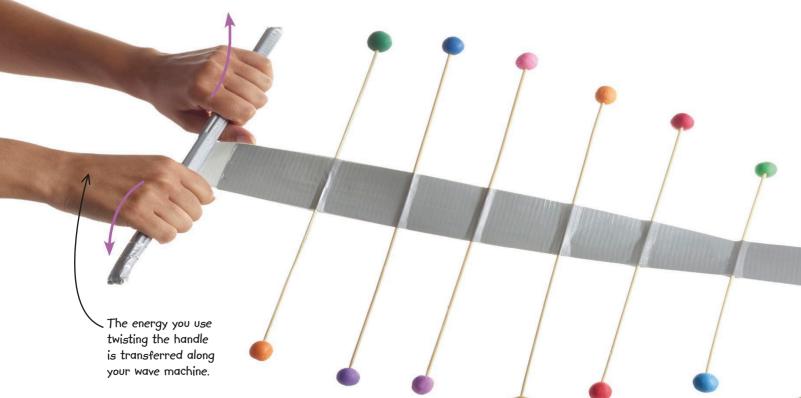
Starting at the second handle, place a new strip of tape sticky side down onto the skewers, on top of and all the way along the upturned tape.



Roll out about I metre (3 ft) of tape. Working from the end nearest the handle, place a skewer across the tape every 5 cm (2 in) or so.

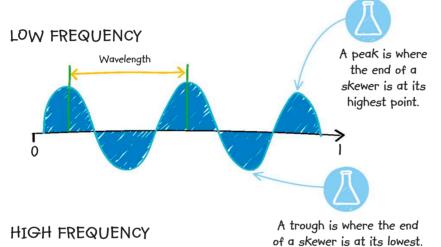
When the wave machine is 3 m (9 ft) long, roll out another 20 cm (8 in) of tape and cut. Place the other handle on top of the tape and roll it for 10 cm (4 in) leaving a 10 cm (4 in) gap without skewers.

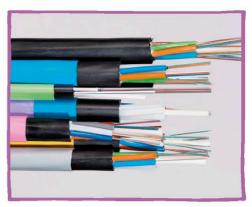



Push one ball of modelling clay onto each end of every skewer. Be careful not to stab your fingers on the sharp ends of the skewers.

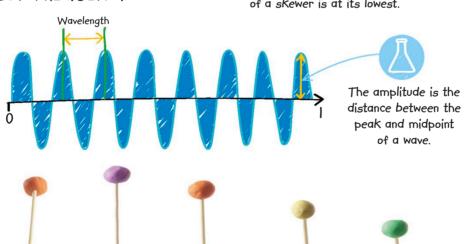
Your wave machine is ready to use! Ask a friend to hold one handle completely still or secure the handle to a piece of furniture. Hold the other handle, stretching it out gently. Now twist it by alternately lifting your left and right hand.

TEST AND TWEAK


Can you make different waves by changing the design of your wave machine? You could try moving the wooden skewers closer together or further apart and making the modelling clay balls smaller or larger – or try missing some of them off altogether! You could also work out the speed of your waves in metres or feet per second by measuring the tape, timing how long a wave takes to travel along it, and dividing the distance by the time.



HOW IT WORKS

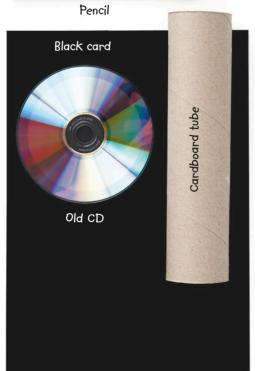

Waves are all around us and take many different forms, from ripples in water to sound waves, light, and radio waves. Your wave machine shows how waves transfer energy from place to place. When you twist the handle, the energy you use transfers along the wave machine. Only the energy moves forwards – the modelling clay balls merely wobble back and forth as they pass on the energy. All types of wave have a speed, a wavelength, and a frequency. The speed is how fast the wave travels. The wavelength is the distance between two "peaks" or "troughs". The frequency is how many waves pass a particular point every second.

REAL WORLD: TECHNOLOGY FIBRE OPTIC CABLES

Much of the information on the internet is shared around the world at high speed by waves of infrared radiation. These light waves pass through thin glass threads known as optical fibres. The light waves reflect and bounce off the insides of the glass threads, travelling along without losing much of their energy, and transmitting data over huge distances.

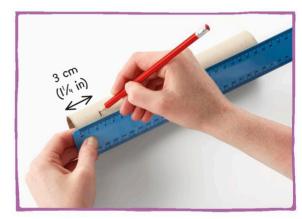
SPLITTING LIGHT

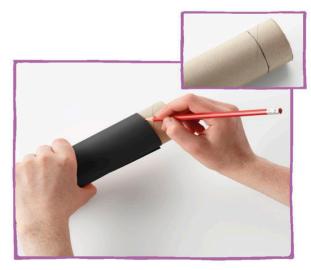
SPECTROSCOPE

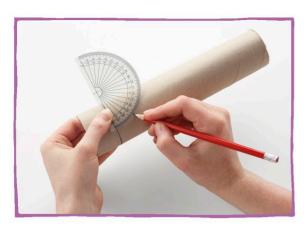

It might look white, but light is actually a mix of different colours. You can see these colours in a rainbow, because each colour bends at a different angle as it bounces off raindrops. Scientists use a device known as a spectroscope to study the range of colours (the spectrum) in different kinds of light. In this activity, you can make your own spectroscope.

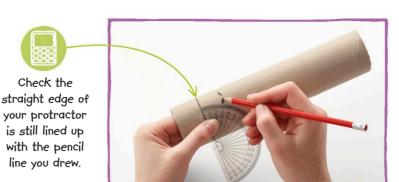
HOW TO BUILD A SPECTROSCOPE

In order to clearly see the spectrum of colours that make up white light, you'll need a shiny CD for the light to bounce off. A slit at the top of a dark tube lets a small amount of light into the tube and onto the CD. You'll need to use a protractor to measure the angle at which you place the CD. You'll also need black electrical tape to block out unwanted light.


WHAT YOU NEED






Using the pencil, make a mark 3 cm (1/4 in) from one end of the cardboard tube.

Wrap the black card around the cardboard tube at the mark. Use it as a guide to draw a line around the tube.

Hold the protractor on the tube so the protractor's zero line runs along the pencil line. Draw a short line angled at 30 degrees.

Move the protractor and draw another line, angled at 30 degrees in the other direction, so the two slanted lines almost meet.

Using the ruler, extend both slanted lines so they meet the line that goes around the cardboard tube, forming a triangle.

On the opposite side of the tube from the triangle, draw a rectangle 2 cm $(\frac{3}{4}$ in) high and 1 cm $(\frac{1}{2}$ in) wide above the pencil line.

Cut along the two slanted lines so that you end up with an angled slot. This is where you'll slide in your old CD.

Now carefully cut out the small rectangle you drew, to make a viewing window for your spectroscope. Ask an adult to help if you get stuck.

Paint the cardboard tube in any colour or design you like, then leave the paint to dry.

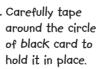
Secure the CD in place inside the slot using black electrical tape.

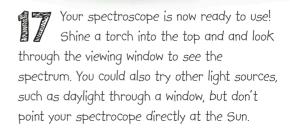
Use strips of electrical tape to close off the end of the cardboard tube closest to the CD. Make sure no light can get into the tube.

Draw around the open end of the cardboard tube onto the black piece of card, using a pencil. Carefully cut out the circle.

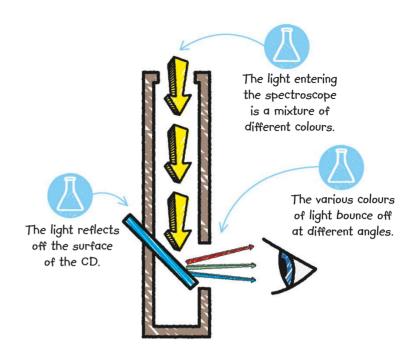
The circle of card will cover the open end of the tube, but it needs a slit to let in light. To make the slit, first fold the circle in half.

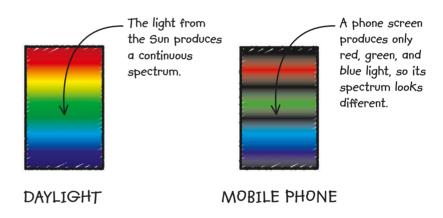
Carefully cut two lines close together at right angles from the middle of the fold. Then snip off the thin piece between the lines.


Unfold the circle and tape it over the open end of the tube. The slit should run from side to side, not front to back, so that it aligns with the slot holding the CD.



Light from the torch enters the slit in the top of the spectroscope.


The light hits the shiny CD and bounces off, splitting into different colours.


HOW IT WORKS

White light is a mixture of all the colours of the rainbow. When it hits a reflective object, all these colours bounce off, or reflect. Light hitting the shiny underside of a CD reflects in a different way. All the colours reflect, but each one bounces off in a different direction. The different colours spread out to form a spectrum.

COMPARING DIFFERENT LIGHT SOURCES

If you compare different light sources, such as daylight or the screen of a mobile phone, you'll find that each one produces a distinctive spectrum. Daylight produces a continuous spectrum, with every colour of the rainbow and no gaps. In contrast, an artificial light source typically produces only certain colours, and so its spectrum has coloured lines with black gaps between them.

REAL WORLD: SCIENCE THE LIGHT OF STARS

Each of the chemical elements of which matter is made produces light with a different spectrum when it burns. Chemists in laboratories can identify which elements are present in different substances by using spectroscopes to study the light they give off when burned. Astronomers also use spectroscopes to study light from stars; from lines in the spectrum, they can tell which elements are present.

VIBRATIONS AND SOUNDWAVES

SINGING SPOONS

In this activity, you'll use metal spoons to create amazing noises that sound like bells or gongs chiming — but you'll only hear these incredible sounds if you put your fingers in your ears! When the spoons swing and bang together, the metal flexes a tiny amount, and then flexes back again repeatedly. These movements, known as vibrations, are too fast and small to see, but they cause the string attached to the spoon to vibrate as well. The vibrations pass along the string and ultimately into your ears!

HOW TO MAKE SINGING SPOONS

To hear the amazing sounds that spoons can produce, all you need to do is secure three metal spoons to string, wrap the string around your fingers, put your fingers in your ears, and knock the spoons together. This activity is super simple and quick to do, but you'll be surprised by the results!

WHAT YOU NEED

This string will carry the vibrations made by the spoons as they knock together.

Cut a piece of string that is about twice the length of your arm. Lay it flat on a table.

At the string's middle point, place the ends of the spoons a few centimetres apart. Secure each spoon to the string with a piece of tape.

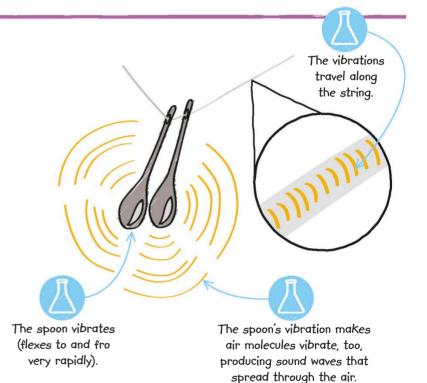
like metal vibrates,
it produces sound.

Metal makes a
different noise from
other materials,
such as plastic
or wood.

Dangle the spoor
wrap the string of hand. Knock the spoor
a sharp, tinny sound.

When a material

Dangle the spoons in front of you and wrap the string around one finger of each hand. Knock the spoons together – they'll make a sharp, tinny sound.



Put the fingers with string around them in your ears. Shake the spoons so they knock each other. The spoons will sound louder and richer, like bells chiming.

TEST AND TWEAK If you switch the metal spoons for other metal objects, such as keys, or nuts and bolts how does Putting your fingers the sound in your ears blocks change? out other noises. Does the so the sound of experiment still the spoons seems even louder. work if you use wooden or plastic spoons instead?

HOW IT WORKS

When metal spoons knock together, they vibrate (move rapidly to and fro). This makes sound because the vibrations make air molecules vibrate too, creating invisible waves that travel through the air to your ears. Sound waves spread out as they travel through air, so the sound you hear is tinny. But when you put your fingers in your ears, the vibrations pass through solid materials (the string, your fingers, and your skull, which houses your inner ears). Sound waves travel more effectively through solids than air because the molecules are more tightly packed together. As a result, you hear a richer, more complex pattern of sound waves.

REAL WORLD: TECHNOLOGY STETHOSCOPE

You can't normally hear your heartbeat as it's too quiet. However, a doctor can hear it with a device called a stethoscope. At one end is a cup that the doctor presses on your chest to collect the faint sound of the heart beating. A hollow tube channels this sound to the doctor's ears, preventing the sound waves from spreading out in all directions and becoming too faint to hear.

WIND INSTRUMENT VIBRATIONS

HARMONICA

Here's a fun and simple way to make some musical notes, and to learn a bit about the science of sound. Just like a real harmonica, this one has a part that vibrates when you direct air past it with your breath. In this homemade version, it's a piece of paper held between two pieces of cocktail stick sandwiched between two lollipop sticks. Go on – see what weird and wonderful sounds you can make!



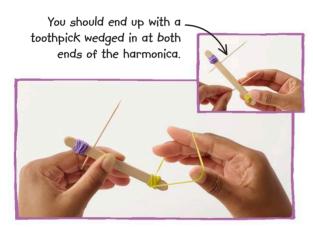
HOW TO MAKE A HARMONICA

This harmonica is made with lollipop sticks. As you are going to be touching these with your mouth, make sure they are clean. The only other things you need are rubber bands, toothpicks, and a strip of paper. You'll be making music in just a few minutes!

WHAT YOU NEED

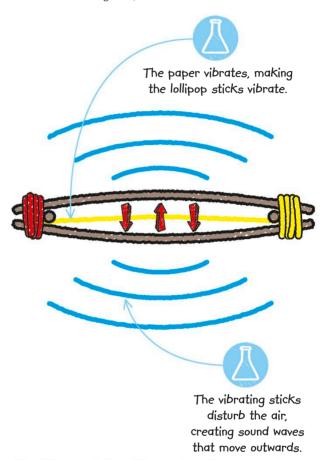
On the paper, draw around a lollipop stick with the pencil, then carefully cut around the shape with the scissors.

Sound is produced by vibrating objects that disturb the air around them. In your harmonica, it is the paper that vibrates.


Place the piece of paper you cut out on top of one of the lollipop sticks, then place the other lollipop stick on top.

Wrap a rubber band several times around one end of the two lollipop sticks, so that it holds them together.

Wedge a toothpick between the lollipop sticks, and slide it as far towards the end with the rubber band as you can.


Wrap another rubber band around the other end of the lollipop sticks, then wedge another toothpick in at that end.

Using scissors, carefully trim the toothpicks and discard the extra pieces. Make sure the paper is flat, not crumpled, then hold the harmonica

HOW IT WORKS

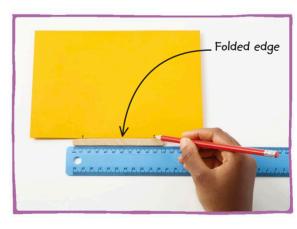

The pieces of toothpick hold the paper firmly at each end. When you blow or suck, air rushing past the paper makes it vibrate, and the vibrations create disturbances in the air that travel outwards in all directions as sound waves. If you blow harder or pinch the sticks as you blow, the paper vibrates faster. This creates a higher-pitched sound.

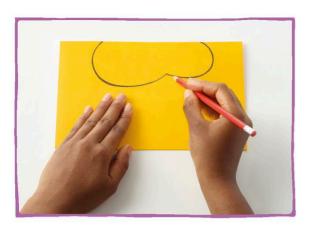
REAL WORLD: SCIENCE VIBRATING REEDS

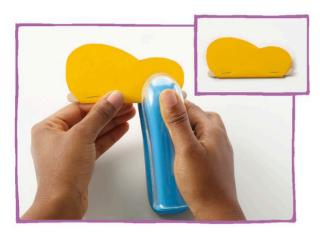
Real harmonicas work in a similar way to your lollipop harmonica. Instead of paper, they have metal sheets called reeds that vibrate when the player blows or sucks through a set of holes. There is at least one reed behind each hole, and each reed is tuned to a different note.

HOW TO MAKE A

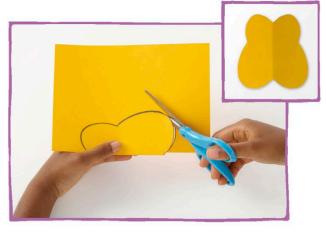
The buzzer is made from a lollipop stick, a rubber band, some card and string, and some adhesive putty. It's quick and easy to make — but you may have to adjust certain things to make your buzzer work well. In particular, you might have to try a few different sizes of rubber band.

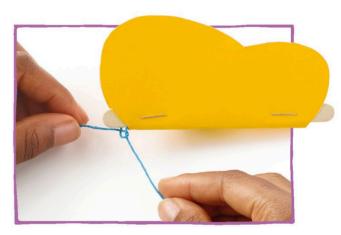

WHAT YOU NEED


Fold the card in half. Make a tight crease by pressing down firmly along the fold.

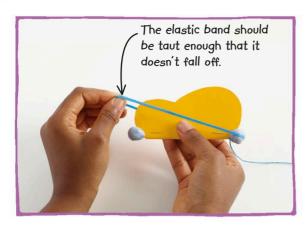


Ruler


Lay the lollipop stick next to the folded edge. Make two pencil marks on the fold, each about I cm (1/2 in) from the end of the stick.


Draw a curve between the two pencil marks, like the shape shown here. This will form the outline of the bee's body.

Place the lollipop stick inside the fold and staple through the card and the stick twice to hold the stick firmly in place.

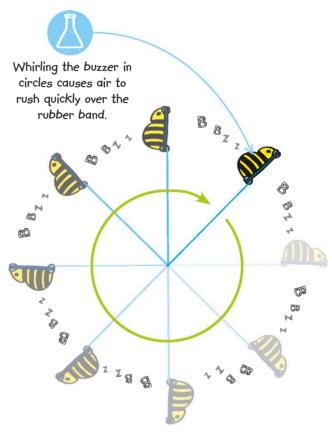


Cut along the pencil line. If you open up the folded piece of card, you'll have a bee shape that's symmetrical.

Cut a length of string at least 50 cm (20 in) long and tie one end securely to one end of the lollipop stick.

Stretch the rubber band over the adhesive putty lumps. Check the band isn't twisted and its sides are parallel to but not touching the lollipop stick.

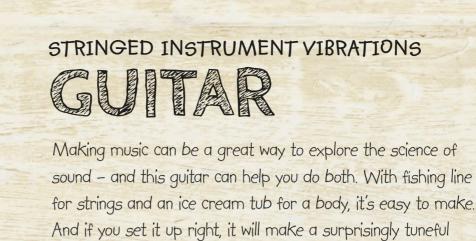
If your buzzer loses its buzz after a few minutes, loosen the rubber band from the adhesive putty and try again.


Open out the wings slightly. Find an open space where your buzzer won't hit any objects or people and whirl it around in large circular movements as fast as you can. If the buzz is too quiet, experiment with thick and thin rubber bands until you find the one that makes the loudest buzz.

As you whirl the buzzer, the string pulls taut. The pulling force is called centripetal force and stops the buzzer flying off in a straight line.

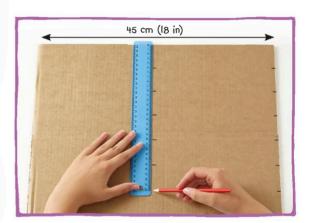
HOW IT WORKS

The buzzing sound is caused by something called aeroelastic flutter. This happens when a flexible object is in fast-moving air, and the air makes it flex back and forth quickly. The rubber band flexes about 200 times a second, which is the same frequency as a bee's wings and so makes a similar sound. You can create an even louder sound from flutter by sandwiching a blade of grass between the sides of your thumbs and blowing through the gap between them.

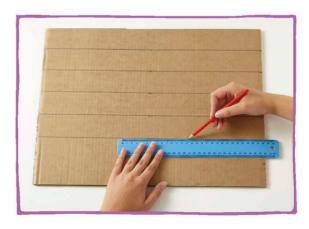

REAL WORLD: SCIENCE TACOMA NARROWS BRIDGE

In 1940, the world's thirdlargest suspension bridge (the Tacoma Narrows Bridge in the USA) was hit by strong winds and began to flutter. It twisted back and forth with such violence that it tore itself apart and collapsed. Today, engineers

go to great lengths to prevent aeroelastic flutter in structures affected by fast-moving air, such as aircraft and bridges.



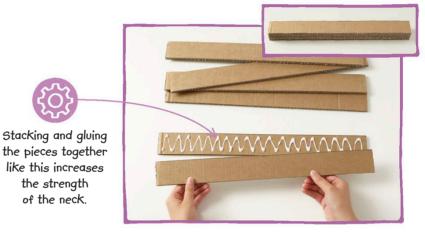
HOW TO MAKE A

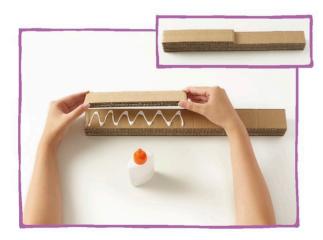

The two most important features of your guitar are the strings and the body. In this project, the strings are made of fishing line. The body of your guitar is made of a plastic ice cream tub. The neck is made of corrugated cardboard.



Make pencil marks every 5 cm (2 in) down the shorter side of the cardboard. Repeat the marks in the middle.

Using the ruler, draw straight lines that join the marks you made and extend them across the whole width of the cardboard.


Cut along the lines, so that you end up with seven long rectangles of cardboard, each 45 cm (18 in) long and 5 cm (2 in) wide.


On one of the long rectangles, make a pencil mark 22½ cm (9 in) from one end - halfway along its length.

Divide the long rectangle into two equal pieces, by cutting where you made the pencil mark.

Stick the other six long rectangles together by applying glue between them and putting them together into a stack.

Now glue the two shorter pieces on top of one end of the stack, so that the stack is thicker at one end. This is the neck of the guitar.

The neck of a guitar has to be strong enough to withstand the stress of the tight strings against it.

Apply the glue-and-paint mixture all over your guitar's neck, and leave it for half an hour or so to dry and set.

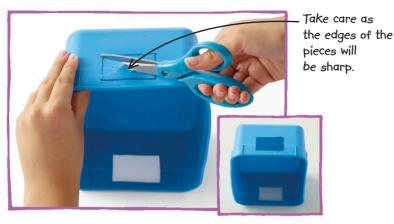
To make it look like a real guitar, we've decorated ours with painted frets. Frets are metal strips on the neck that help the player find the notes.

This is to ensure that the neck will line up with the side of the tub.

Stand the tub on one of its shorter sides.

Hold the thick end of the neck against the rim of the tub. Make a mark on the tub next to the

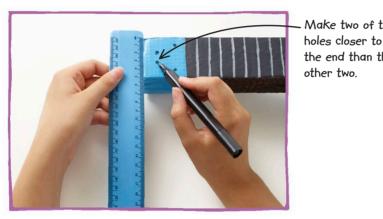
Apply a few pieces of duct tape around both ends of the guitar's neck, to strengthen them further.


Try to position the neck in the middle of the tub's side.

Put adhesive putty under the tub to protect the table.

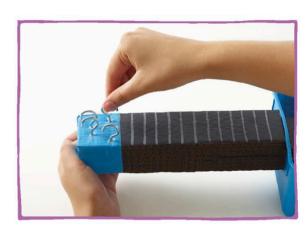
Hold the thin end of the neck against the end of the tub, and line up the top of it with the mark you made. Draw around the neck.

Repeat steps II and I2 at the other end of the tub. Now carefully use the scissors to make a hole in the middle of each rectangle, from the inside of the box outwards.


Neatly cut out each rectangle, starting at the hole you made. Cut straight lines out to the corners first, then along the rectangle's sides.

Make two of the

the end than the other two.

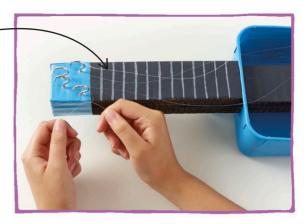


Push the thin end of the neck unrough and two holes, until the thick part of the neck Push the thin end of the neck through the juts up against the side of the tub.

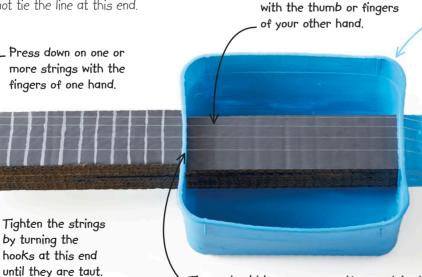
Line up a ruler at the thick end of the Line up a ruier ut the things.

neck. Mark dots at I cm (½ in) intervals, making two of them closer to the end, as shown.

Screw the four hooks into each of the holes. These will hold the guitar's strings.


Draw four more dots on the tape at the thin end of the neck. Make these I cm ($\frac{1}{2}$ in) apart, too, but all in a line this time.

Cut four pieces of fishing line, 10 cm (4 in) longer than the distance from one set of hooks to the other set of hooks.



At the thick end of the neck, attach each length of fishing line to a hook. Tie a double knot as tightly as you can.

Pull the free end of each length taut and Pull the tree end of caching which wrap it once or twice around a hook at the other end. Do not tie the line at this end.

Pull the ends of the four lengths of fishing line together, keeping them taut, and then secure them with the bulldog clip. See what happens when you move your fingers up and down the guitar neck while plucking the strings at the same time.

Pluck one or more strings

The body of the

guitar is what

amplifies the sound.

There should be a gap between the strings and the rim of the tub.

You can trim the ends of the strings, but don't make them too short.

HOW IT WORKS

Plucking a string on your guitar causes the string to vibrate many times per second. The more tension there is in the string (the more tightly it's pulled), the more rapidly it vibrates - and the higher the pitch. Pressing a string also raises the pitch. When you press a string, it touches the Plucking the string quitar body in the middle and only its lower half vibrates. This produces causes it to vibrate. a note one octave higher. The strings cause the body of the guitar to vibrate, which disturbs much more air, because it has a larger surface area. This amplifies the vibration of the strings, making it louder. Pressing the strings down with your fingers on the cardboard changes the length of the string, which changes the note. Without the body of the guitar, the sound waves created by the string's The length, tension, vibrations would and thickness of the barely be audible. string all affect the note produced. As the body of the guitar vibrates, it amplifies the sound of the strings.

REAL WORLD: TECHNOLOGY ACOUSTIC GUITAR

Acoustic guitars have six strings, with each one being a different thickness. The thicker the string, the lower the note it makes. This allows a guitar to produce a great range of notes and sound. Also, unlike your ice-cream-tub guitar, acoustic guitars have a closed front part, with a sound hole, which helps to amplify deeper sounds, as the air inside the guitar is compressed and expands. Finally, the material the guitar is made from greatly affects the sound, as certain materials produce different kinds of sound. Though wood is the most common material, acoustic guitars can also be made from metal or plastic.

GLOSSARY

ACID

A substance that has a pH of less than 7. Strong acids (with pH between I and 3) can burn your skin. Weak acids (with pH between 4 and 7) are present in vinegar, lemon juice, and cola.

AERODYNAMICS

The study of how air moves around objects, and how the air produces forces such as air resistance and lift.

AIR RESISTANCE

A force that slows down moving objects as they travel through air.

ATMOSPHERIC PRESSURE

The pressure of the air around you, also Known as air pressure.

ATOM

A tiny particle of matter. An atom is the smallest part of an element that can exist.

BASE

A substance that has a pH of more than 7. A base is the chemical opposite of an acid.

BEARING

Part of a machine that reduces friction between moving parts. There are bearings in wheels, for example, that allow the wheel to spin freely.

CAM

A machine part that turns rotation into back-and-forth or up-and-down motion.

CARBON DIOXIDE

A chemical compound that is found as a gas in the atmosphere and in fizzy drinks.

CHEMICAL

A substance that is the same all the way through — it is not a mixture. Chemicals can be elements or compounds, and may be liquids, solids, or gases.

CHEMICAL REACTION

A process in which the atoms of two or more chemicals interact to make new chemicals

COMPOUND

A chemical made of two or more elements. Water is a compound made of the elements hydrogen and oxygen.

COMPRESSION

A squashing force, the opposite of tension.

CONDUCTION

The flow of heat or electricity through a material.

CONDUCTOR

A material through which heat or electricity flows easily. Metals are good conductors.

CRANK

A machine part that can turn rotation into to-and-fro motion or do the opposite.

CYLINDER

A three-dimensional shape that has a circle as its cross-section.

DENSITY

A measure of how much mass is present in a certain volume of a substance.

ELECTRON

A negatively charged particle found in atoms.

Electricity is a flow of electrons.

ELEMENT

A substance made of just one type of atom that cannot be broken down into a simpler substance by chemical reactions.

ELLIPSE

An oval, or flattened circle.

The orbits of planets around the Sun are elliptical.

ENERGY

The ability to make things happen. Energy can take various forms, such as electrical energy, kinetic energy (the energy of moving objects), and potential energy (stored energy).

EVAPORATION

The process by which a liquid turns into a gas.

FLUTTER

An energetic vibration created as an object moves through the air (or as air moves past it). The forces exerted by the air cause the object to turn one way, then the other.

FORCE

A push or a pull. Forces change how an object moves: by causing it to start or stop moving, speed up or slow down, or change direction. Forces can also change the shape of an object.

FRICTION

A force between surfaces that are in contact. Friction between a tyre and the ground pushes a bicycle along as the wheels turn.

GEL

A mixture in which tiny drops of liquid are held in a solid. Jelly is a gel. A gelling agent is a substance that is added to water to turn it into a gel.

GENERATOR

A device that produces electricity when it spins around.

GRAVITY

A force that pulls objects together. Earth's gravity pulls things towards the ground.

HYDROGEN ION

A hydrogen atom that has either lost or gained an electron. The more hydrogen ions in a solution, the lower the solution's pH. Acids release lots of hydrogen ions when they dissolve in water, and bases gain them.

INSULATOR

A material through which heat passes slowly. Your clothes insulate you, slowing down the loss of your body heat to the air around you.

ION

An atom that has a negative or positive electric charge.

LEVER

A rigid bar that modifies force or motion when it swings around a fixed point known as a pivot.

LIFT

An upward force on an object moving through the air. It is the result of the air pressure being greater beneath the object than it is above.

MASS

A measure of the amount of matter (stuff) in an object. The force of gravity pulls on everything with mass, so the more mass something has, the more it weighs.

MIXTURE

A substance made of two or more compounds or elements. A mixture can be composed of solids, liquids, and gases. Air is a mixture of gases.

MOLECULE

Two or more atoms joined together.

ORBIT

The path of a planet, comet or asteroid, around the Sun - or the path of a moon or a satellite around a planet. The force of gravity keeps objects in their orbits.

pH

A measure of the concentration of hydrogen ions in a solution. The more hydrogen ions, the lower the pH, and the more acidic the solution.

PIGMENT

A colourful substance.

Inks, paints, and flowers
all contain pigments.

PRESSURE

A measure of how much a force pushes on a surface.

PYRAMID

A three-dimensional shape with a point at the top and a triangle or a square at the base.

RADIATION

The loss of heat from a hot object (as it gives out infrared radiation). Also short for electromagnetic radiation.
Light, infrared, ultraviolet, radio waves, and X-rays are all forms of electromagnetic radiation.

RECYCLING

The process of reusing something that is no longer needed.

SOLUTION

A mixture where one substance is dissolved in a liquid.

SOUND WAVE

An invisible wave that travels through air (or through liquids and solids) as alternating zones of high and low pressure.

SPECTRUM

A spread of colours produced by splitting light into the colours of which it is made, as happens in a rainbow.

TENSION

A pulling force, the opposite of compression.

TURBINE

A device with rotating fan blades that are driven by the pressure of gases, liquids, or steam. Turbines powered by the wind or by moving water are often used to generate electricity.

VIBRATION

A very rapid back-and-forth movement. Guitar strings vibrate when you pluck them, creating sound waves.

VOLUME

The amount of space something takes up, normally measured in millilitres. litres. or cubic metres.

WAVELENGTH

The distance between two peaks of a wave. In a sound wave, the wavelength is the distance between one point of highest air pressure and the next.

WEIGHT

The downward force on an object caused by gravity. The more mass something has, the more it weighs.

INDEX

acids 78-81, 84-85 aeroelastic flutter 149 disturbances 142-145. 151, 157 fast-moving 149 insulation 65, 69 molecules 141 air fresheners 74-77 air resistance 17 airflow 38-41 amplitude 131 artificial light 137 atoms 85 automatons 50-59

8

balanced forces 18, 23, 97 104 bases 78-81 batteries 17 blades 30, 31, 32, 34-37 blubber 65 bones, hollow 97 buckminsterfullerine III building materials 118-123 buoyancy 18, 19, 22, 23 buzzers 146-149

C

cables 98-99, 104-105 cakes, baking 81 cams 50, 59 carbon III carbon dioxide 80, 81 cars 10-17, 59 centre of gravity 93 centripetal force 149 chemical reactions 78-81, 82-87

chlorine 85, 87 columns 97 compounds 84, 85, 87 compression 97, 98, 105 conduction 69 construction science 90-93 contact lenses 77 copper 82-87 cranks 45, 48, 49, 55, 58, 59 cubes 91, 92 cylinders 59, 94-97

DF

daylight 137 density 23, 80, 81, 97 drawings, scaling up/down 112-117 ears [4] electric cars 17 electrical energy 31, 37 elements 137 ellipses 25, 28, 29 energy potential 10-17 transferring II, 16, 30-37, 126-131 engines, car 59 essential oils 74-77

FG

fats 64, 65 fibre optic cables 131 floating 18-23 frequency 131, 149 friction 16, 17, 28, 48, 123 gels 74-77 generators 37 geodesic domes 106-111

evaporation 74, 77

gravity 24-29 greenhouses 106 quitars 150-157

HII

heat loss 62-65, 69 heat transfer 66-69 hydrogen 85 infrared radiation 68, 69 insulation 62-65, 69 iron 86 iibs 42, 43, 44-49

KL

Kinetic energy 16, 17, 36, 37 levers 116 levitation 38-41 lifting 42, 48-49 light, splitting 132-137 Lissaious curves 29 loads 19, 20, 22, 36, 42, 48-49, 104, 122-123

MO

mainsprings 10, 11, 12, 14-17 mass 16, 18, 22, 23, 93 matter 61, 97, 137 mechanical linkages 117 molecules 77, 97, 141 motion and airflow 38-41 oil 62-65 orbits 29 osteons 97 oxides 85, 87 oxygen 77, 85, 87

pantographs 112-117 parallelograms 91, 93, 115.117 pendulums 24-29 pH indicators 78-80 pitch 142, 157 polymers 77 pontoon bridges 22 potential energy 10-17 preservatives 77 pressure 70, 73, III pyramids 92, 93

radiation 69 reaction forces 41 reeds 145 reflection 68, 69, 137 reinforcement 119-123 resistance 17, 123 rotation 36, 59

S

sails 41 salt 77, 85, 86, 87 sandcastles 118-123 satellites 29 siphons 70-73 slope stabilization 123 sodium 85, 87 sound 138-157 span 105 spectrum, colour 132-137 speed 16, 17, 131 squares 91, 93 stability 93, 96, 111, 123 stars 137 steel 86 stethoscopes 141 stress III, 154

submarines 23 suspension bridges 98-105, 149

TU

temperatures 62, 65, 69 tension 29, 104, 150, 156, 157 thermos 66-69 toilet flush 73 torque 48, 49 tower cranes 42-49 towers 90-93, 98-105 traction 17 transferred energy II, 16, 30-37. 126-131 triangles 90, 92-93, 106, 109-111 umbrellas 117 upthrust 18, 19, 23

VW

vacuums 69 vibrations 138-141, 142-145, 150-157 water, displacement 23 wavelength 131 waves light 126-131 sound 138-141, 145, 146, 151 wind turbines 30-37 wind-up mechanisms 10-17 windsurfing 41 wings 148, 149

ACKNOWLEDGMENTS

The publisher would like to thank the following people for their assistance in the preparation of this book:

Sam Atkinson and Pauline Savage for editorial assistance; Smiljka Surla for design assistance; Steve Crozier and Adam Brackenbury for picture retouching; Pankaj Sharma, Ashok Kumar, Nityanand Kumar, and Jagtar Singh for repro work; Sean T. Ross for testing the experiments; Clarisse Hassan for additional illustrations; Helen Peters for indexing; Victoria Pyke for proofreading; Emmie-Mae Avery, Amelia Collins, Lex Hebblethwaite, Mollie Penfold, Melissa Sinclair, Kelly Wray, Abi Wright for hand modelling.

The publisher would like to thank the following for their kind permission to reproduce their photographs

(Key: a-above, b-below/bottom, c-centre, f-far, l-left, r-right, t-top). 17 Dreamstime.com: Masezdromaderi (tr); Getty Images: Stringer / Bill Pugliano / Getty Images News (cr). 23 Getty Images: Jeff Rotman / The Image Bank (bl). 29 iStockphoto.com: BlackJack3D (crb). 37 Dreamstime.com: Toldiu74 (bl). 41 Alamy Stock Photo: Michele and Tom Grimm (crb). 49 Dreamstime.com: Andrey Shupilo (br). 59 Dreamstime.com: Vladislav Kochelaevskiy (br). 65 iStockphoto.com: oversnap (bl). 69 Depositphotos Inc: alexlmx (br). 77 Dorling Kindersley: Stephen Oliver (crb). 81 Dreamstime.com: Andrey Armyagov (bl). 93 Dreamstime.com: Jarrun Klinmontha (crb). 97 Dorling Kindersley: Natural History Museum, London / Harry

Taylor (cb); Dreamstime.com: Horseman 82 (clb); Science Photo Library: Steve Lowry (crb). 105 123RF.com: Songquan Deng (crb); Dreamstime.com: Ian Klein (clb). III Science Photo Library: Laguna Design (bl). II7 Dreamstime.com: Hayati Kayhan (br). I23 The Reinforced Earth Company: (br). 131 Dreamstime.com: STRINGERimages (cra). 137 NASA: ESA / Hubble & NASA (bl). 141 Getty Images: Inti St Clair / Blend Images (bl). 145 Dreamstime. com: Elitsa Lambova (br). 149 Rex by Shutterstock: AP (bc). 157 Dreamstime.com: Mrchan (br).

All other images © Dorling Kindersley. For further information see: www.dkimages.com